string = ''
for i, (symbol, coefficient) in enumerate(self.coefficients()):
if coefficient == 1:
- string += '' if i == 0 else ' + '
- string += '{!r}'.format(symbol)
+ if i != 0:
+ string += ' + '
elif coefficient == -1:
string += '-' if i == 0 else ' - '
- string += '{!r}'.format(symbol)
+ elif i == 0:
+ string += '{}*'.format(coefficient)
+ elif coefficient > 0:
+ string += ' + {}*'.format(coefficient)
else:
- if i == 0:
- string += '{}*{!r}'.format(coefficient, symbol)
- elif coefficient > 0:
- string += ' + {}*{!r}'.format(coefficient, symbol)
- else:
- string += ' - {}*{!r}'.format(-coefficient, symbol)
+ string += ' - {}*'.format(-coefficient)
+ string += '{}'.format(symbol)
constant = self.constant
if len(string) == 0:
string += '{}'.format(constant)
string += ' - {}'.format(-constant)
return string
+ def _repr_latex_(self):
+ string = ''
+ for i, (symbol, coefficient) in enumerate(self.coefficients()):
+ if coefficient == 1:
+ if i != 0:
+ string += ' + '
+ elif coefficient == -1:
+ string += '-' if i == 0 else ' - '
+ elif i == 0:
+ string += '{}'.format(coefficient._repr_latex_().strip('$'))
+ elif coefficient > 0:
+ string += ' + {}'.format(coefficient._repr_latex_().strip('$'))
+ elif coefficient < 0:
+ string += ' - {}'.format((-coefficient)._repr_latex_().strip('$'))
+ string += '{}'.format(symbol._repr_latex_().strip('$'))
+ constant = self.constant
+ if len(string) == 0:
+ string += '{}'.format(constant._repr_latex_().strip('$'))
+ elif constant > 0:
+ string += ' + {}'.format(constant._repr_latex_().strip('$'))
+ elif constant < 0:
+ string += ' - {}'.format((-constant)._repr_latex_().strip('$'))
+ return '${}$'.format(string)
+
def _parenstr(self, always=False):
string = str(self)
if not always and (self.isconstant() or self.issymbol()):
def __repr__(self):
return self.name
+ def _repr_latex_(self):
+ return '${}$'.format(self.name)
+
@classmethod
def fromsympy(cls, expr):
import sympy
def __repr__(self):
return '_{}'.format(self.name)
+ def _repr_latex_(self):
+ return '${}_{{{}}}$'.format(self.name, self._index)
+
def symbols(names):
if isinstance(names, str):
def fromstring(cls, string):
if not isinstance(string, str):
raise TypeError('string must be a string instance')
- return Rational(Fraction(string))
+ return Rational(string)
+
+ def __repr__(self):
+ if self.denominator == 1:
+ return '{!r}'.format(self.numerator)
+ else:
+ return '{!r}/{!r}'.format(self.numerator, self.denominator)
+
+ def _repr_latex_(self):
+ if self.denominator == 1:
+ return '${}$'.format(self.numerator)
+ elif self.numerator < 0:
+ return '$-\\frac{{{}}}{{{}}}$'.format(-self.numerator,
+ self.denominator)
+ else:
+ return '$\\frac{{{}}}{{{}}}$'.format(self.numerator,
+ self.denominator)
@classmethod
def fromsympy(cls, expr):
else:
strings = []
for equality in self.equalities:
- strings.append('0 == {}'.format(equality))
+ strings.append('Eq({}, 0)'.format(equality))
for inequality in self.inequalities:
- strings.append('0 <= {}'.format(inequality))
+ strings.append('Ge({}, 0)'.format(inequality))
if len(strings) == 1:
return strings[0]
else:
return 'And({})'.format(', '.join(strings))
+ def _repr_latex_(self):
+ if self.isempty():
+ return '$\\emptyset$'
+ elif self.isuniverse():
+ return '$\\Omega$'
+ else:
+ strings = []
+ for equality in self.equalities:
+ strings.append('{} = 0'.format(equality._repr_latex_().strip('$')))
+ for inequality in self.inequalities:
+ strings.append('{} \\ge 0'.format(inequality._repr_latex_().strip('$')))
+ return '${}$'.format(' \\wedge '.join(strings))
+
@classmethod
def fromsympy(cls, expr):
domain = Domain.fromsympy(expr)
def test_str(self):
self.assertEqual(str(self.square),
- 'And(0 <= x, 0 <= -x + 1, 0 <= y, 0 <= -y + 1)')
+ 'And(Ge(x, 0), Ge(-x + 1, 0), Ge(y, 0), Ge(-y + 1, 0))')
def test_repr(self):
self.assertEqual(repr(self.square),
- "And(0 <= x, 0 <= -x + 1, 0 <= y, 0 <= -y + 1)")
+ "And(Ge(x, 0), Ge(-x + 1, 0), Ge(y, 0), Ge(-y + 1, 0))")
def test_fromstring(self):
self.assertEqual(Polyhedron.fromstring('{x >= 0, -x + 1 >= 0, '