#!/usr/bin/env python3
+import pylab
+
from pypol import *
x, y, z = symbols('x y z')
-diam = Ge(y, x - 1) & Le(y, x + 1) & Ge(y, -x - 1) & Le(y, -x + 1)
-print('diamond:', diam)
-print()
-rhom1 = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3) & Le(0, z) & Le(z, 3) \
-& Le(z - 2, x) & Ge(z + 2, x) & Ge(z - 1, -x) & Le(z - 5, -x) \
-& Le(z - 2, y) & Ge(z + 2, y) & Ge(z - 1, -y) & Le(z - 5, -y) \
-& Le(y - 2, x) & Ge(y + 2, x) & Ge(y - 1, -x) & Le(y - 5, -x)
-rhom1.plot()
-rhom2 = rhom1 & Le(x + y + z, 7) & Ge(-2, -x - y - z ) \
-& Le(x + y - z, 4) & Ge(x + y - z, -1) \
-& Le(x - y + z, 4) & Ge(x - y + z, -1) \
-& Le(-x + y + z, 4) & Ge(-x + y + z, -1)
-rhom2.plot()
+
+# diam = Ge(y, x - 1) & Le(y, x + 1) & Ge(y, -x - 1) & Le(y, -x + 1)
+# print('diamond:', diam)
+# diam.plot(fill=True, edgecolor='red', facecolor='yellow')
+# pylab.show()
+
+# Chamfered cube
+cham = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3) & Le(0, z) & Le(z, 3) & \
+ Le(z - 2, x) & Le(x, z + 2) & Le(1 - z, x) & Le(x, 5 - z) & \
+ Le(z - 2, y) & Le(y, z + 2) & Le(1 - z, y) & Le(y, 5 - z) & \
+ Le(y - 2, x) & Le(x, y + 2) & Le(1 - y, x) & Le(x, 5 - y)
+cham_plot = cham.plot(facecolors=(1, 0, 0, 0.75))
+pylab.show()
+
+# Rhombicuboctahedron
+rhom = cham & \
+ Le(x + y + z, 7) & Ge(-2, -x - y - z) & \
+ Le(-1, x + y - z) & Le(x + y - z, 4) & \
+ Le(-1, x - y + z) & Le(x - y + z, 4) & \
+ Le(-1, -x + y + z) & Le(-x + y + z, 4)
+rhom.plot(facecolors=(0, 1, 0, 0.75))
+pylab.show()
+
+# Truncated cuboctahedron
+cubo = Le(0, x) & Le(x, 5) & Le(0, y) & Le(y, 5) & Le(0, z) & Le(z, 5) & \
+ Le(x -4, y) & Le(y, x + 4) & Le(-x + 1, y) & Le(y, -x + 9) & \
+ Le(y -4, z) & Le(z, y + 4) & Le(-y + 1, z) & Le(z, -y + 9) & \
+ Le(z -4, x) & Le(x, z + 4) & Le(-z + 1, x) & Le(x, -z + 9) & \
+ Le(3, x + y + z) & Le(x + y + z, 12) & \
+ Le(-2, x - y + z) & Le(x - y + z, 7) & \
+ Le(-2, -x + y + z) & Le(-x + y + z, 7) & \
+ Le(-2, x + y - z) & Le(x + y - z, 7)
+cubo_plot = cubo.plot(facecolors=(0, 0, 1, 0.75))
+pylab.show()
faces.append(face)
return faces
- def plot(self):
- """
- Display 3D plot of set.
- """
+ def _plot_2d(self, plot=None, **kwargs):
+ from matplotlib import pylab
import matplotlib.pyplot as plt
- import matplotlib.patches as patches
-
- if len(self.symbols)> 3:
- raise TypeError
-
- elif len(self.symbols) == 2:
- import pylab
- points = []
- for verts in self.vertices():
- pairs=()
- for coordinate, point in verts.coordinates():
- pairs = pairs + (float(point),)
- points.append(pairs)
- cent=(sum([p[0] for p in points])/len(points),sum([p[1] for p in points])/len(points))
- points.sort(key=lambda p: math.atan2(p[1]-cent[1],p[0]-cent[0]))
- pylab.scatter([p[0] for p in points],[p[1] for p in points])
- pylab.gca().add_patch(patches.Polygon(points,closed=True,fill=True))
- pylab.grid()
- pylab.show()
-
- elif len(self.symbols)==3:
- from mpl_toolkits.mplot3d import Axes3D
- from mpl_toolkits.mplot3d.art3d import Poly3DCollection
- faces = self.faces()
+ from matplotlib.axes import Axes
+ from matplotlib.patches import Polygon
+ vertices = self._sort_polygon_2d(self.vertices())
+ xys = [tuple(vertex.values()) for vertex in vertices]
+ if plot is None:
fig = plt.figure()
- ax = Axes3D(fig)
- for face in faces:
- points = []
- vertices = Polyhedron._sort_polygon_3d(face)
- for verts in vertices:
- pairs=()
- for coordinate, point in verts.coordinates():
- pairs = pairs + (float(point),)
- points.append(pairs)
- collection = Poly3DCollection([points], alpha=0.7)
- face_color = [0.5, 0.5, 1] # alternative: matplotlib.colors.rgb2hex([0.5, 0.5, 1])
- collection.set_facecolor(face_color)
- ax.add_collection3d(collection)
- ax.set_xlabel('X')
- ax.set_xlim(0, 5)
- ax.set_ylabel('Y')
- ax.set_ylim(0, 5)
- ax.set_zlabel('Z')
- ax.set_zlim(0, 5)
- plt.grid()
- plt.show()
- return points
-
- @classmethod
- def limit(cls, faces, variable, lim):
- sym = []
- if variable is 'x':
- n = 0
- elif variable is 'y':
- n = 1
- elif variable is 'z':
- n = 2
- for face in faces:
- for vert in face:
- coordinates = vert.coordinates()
- for point in enumerate(coordinates):
- coordinates.get(n)
- sym.append(points)
- if lim == 0:
- value = min(sym)
+ plot = fig.add_subplot(1, 1, 1)
+ xs, ys = zip(*xys)
+ plot.set_xlim(float(min(xs)), float(max(xs)))
+ plot.set_ylim(float(min(ys)), float(max(ys)))
+ plot.add_patch(Polygon(xys, closed=True, **kwargs))
+ return plot
+
+ def _plot_3d(self, plot=None, **kwargs):
+ import matplotlib.pyplot as plt
+ from mpl_toolkits.mplot3d import Axes3D
+ from mpl_toolkits.mplot3d.art3d import Poly3DCollection
+ if plot is None:
+ fig = plt.figure()
+ axes = Axes3D(fig)
+ xmin, xmax = float('inf'), float('-inf')
+ ymin, ymax = float('inf'), float('-inf')
+ zmin, zmax = float('inf'), float('-inf')
else:
- value = max(sym)
- return value
+ axes = plot
+ poly_xyzs = []
+ for vertices in self.faces():
+ if len(vertices) == 0:
+ continue
+ vertices = Polyhedron._sort_polygon_3d(vertices)
+ vertices.append(vertices[0])
+ face_xyzs = [tuple(vertex.values()) for vertex in vertices]
+ if plot is None:
+ xs, ys, zs = zip(*face_xyzs)
+ xmin, xmax = min(xmin, float(min(xs))), max(xmax, float(max(xs)))
+ ymin, ymax = min(ymin, float(min(ys))), max(ymax, float(max(ys)))
+ zmin, zmax = min(zmin, float(min(zs))), max(zmax, float(max(zs)))
+ poly_xyzs.append(face_xyzs)
+ collection = Poly3DCollection(poly_xyzs, **kwargs)
+ axes.add_collection3d(collection)
+ if plot is None:
+ axes.set_xlim(xmin, xmax)
+ axes.set_ylim(ymin, ymax)
+ axes.set_zlim(zmin, zmax)
+ return axes
+
+ def plot(self, plot=None, **kwargs):
+ """
+ Display 3D plot of set.
+ """
+ if self.dimension == 2:
+ return self._plot_2d(plot=plot, **kwargs)
+ elif self.dimension == 3:
+ return self._plot_3d(plot=plot, **kwargs)
+ else:
+ raise ValueError('polyhedron must be 2 or 3-dimensional')
+
def _polymorphic(func):
@functools.wraps(func)