-from pypol import *
-
-a, x, y, z = symbols('a x y z')
-
-sq1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2)
-sq2 = Le(2, x) & Le(x, 4) & Le(2, y) & Le(y, 4)
-sq3 = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3)
-sq4 = Le(1, x) & Le(x, 2) & Le(1, y) & Le(y, 2)
-sq5 = Le(1, x) & Le(x, 2) & Le(1, y)
-sq6 = Le(1, x) & Le(x, 2) & Le(1, y) & Eq(y, 3)
-sq7 = Le(0, x) & Le(x, 2) & Le(0, y) & Eq(z, 2) & Le(a, 3)
-universe = Polyhedron([])
-q = sq1 - sq2
-e = Empty
-
-print('sq1 =', sq1) #print correct square
-print('sq2 =', sq2) #print correct square
-print('sq3 =', sq3) #print correct square
-print('sq4 =', sq4) #print correct square
-print('universe =', universe) #print correct square
-print()
-print('¬sq1 =', ~sq1) #test complement
-print()
-print('sq1 + sq1 =', sq1 + sq2) #test addition
-print('sq1 + sq2 =', Polyhedron(sq1 + sq2)) #test addition
-print()
-print('universe + universe =', universe + universe)#test addition
-print('universe - universe =', universe - universe) #test subtraction
-print()
-print('sq2 - sq1 =', sq2 - sq1) #test subtraction
-print('sq2 - sq1 =', Polyhedron(sq2 - sq1)) #test subtraction
-print('sq1 - sq1 =', Polyhedron(sq1 - sq1)) #test subtraction
-print()
-print('sq1 ∩ sq2 =', sq1 & sq2) #test intersection
-print('sq1 ∪ sq2 =', sq1 | sq2) #test union
-print()
-print('sq1 ⊔ sq2 =', Polyhedron(sq1 | sq2)) # test convex union
-print()
-print('check if sq1 and sq2 disjoint:', sq1.isdisjoint(sq2)) #should return false
-print()
-print('sq1 disjoint:', sq1.disjoint()) #make disjoint
-print('sq2 disjoint:', sq2.disjoint()) #make disjoint
-print()
-print('is square 1 universe?:', sq1.isuniverse()) #test if square is universe
-print('is u universe?:', universe.isuniverse()) #test if square is universe
-print()
-print('is sq1 a subset of sq2?:', sq1.issubset(sq2)) #test issubset()
-print('is sq4 less than sq3?:', sq4.__lt__(sq3)) # test lt(), must be a strict subset
-print()
-print('lexographic min of sq1:', sq1.lexmin()) #test lexmin()
-print('lexographic max of sq1:', sq1.lexmax()) #test lexmin()
-print()
-print('lexographic min of sq2:', sq2.lexmin()) #test lexmax()
-print('lexographic max of sq2:', sq2.lexmax()) #test lexmax()
-print()
-print('Polyhedral hull of sq1 + sq2 is:', q.polyhedral_hull()) #test polyhedral hull
-print()
-print('is sq1 bounded?', sq1.isbounded()) #unbounded should return True
-print('is sq5 bounded?', sq5.isbounded()) #unbounded should return False
-print()
-print('sq6:', sq6)
-print('sq6 simplified:', sq6.sample())
-print()
-print(universe.project_out([x]))
-print('sq7 with out constraints involving y and a', sq7.project_out([a, z, x, y])) #drops dims that are passed
-print()
-print('sq1 has {} parameters'.format(sq1.num_parameters()))
-print()
-print('does sq1 constraints involve x?', sq1.involves_dims([x]))
+# This is the code example used in the tutorial. It shows how to define and
+# manipulate polyhedra.
+
+import code
+
+
+class InteractiveConsole(code.InteractiveConsole):
+ def push(self, line=''):
+ if line:
+ print('>>>', line)
+ return super().push(line)
+ else:
+ print()
+
+
+if __name__ == '__main__':
+
+ shell = InteractiveConsole()
+
+ shell.push('from linpy import *')
+ shell.push("x, y = symbols('x y')")
+ shell.push()
+
+ shell.push('square1 = Le(0, x, 2) & Le(0, y, 2)')
+ shell.push('square1')
+ shell.push()
+
+ shell.push("square2 = Polyhedron('1 <= x <= 3, 1 <= y <= 3')")
+ shell.push('square2')
+ shell.push()
+
+ shell.push('inter = square1.intersection(square2) # or square1 & square2')
+ shell.push('inter')
+ shell.push()
+
+ shell.push('hull = square1.convex_union(square2)')
+ shell.push('hull')
+ shell.push()
+
+ shell.push('proj = square1.project([y])')
+ shell.push('proj')
+ shell.push()
+
+ shell.push('inter <= square1')
+ shell.push('inter == Empty')
+ shell.push()
+
+ shell.push('union = square1.union(square2) # or square1 | square2')
+ shell.push('union')
+ shell.push('union <= hull')
+ shell.push()
+
+ shell.push('diff = square1.difference(square2) # or square1 - square2')
+ shell.push('diff')
+ shell.push('~square1')