-import ctypes, ctypes.util
+import ast
import functools
import numbers
+import re
from fractions import Fraction, gcd
'Expression', 'Constant', 'Symbol', 'symbols',
'eq', 'le', 'lt', 'ge', 'gt',
'Polyhedron',
- 'empty', 'universe'
+ 'Empty', 'Universe'
]
self._coefficients = {}
for symbol, coefficient in coefficients:
if isinstance(symbol, Symbol):
- symbol = str(symbol)
+ symbol = symbol.name
elif not isinstance(symbol, str):
raise TypeError('symbols must be strings or Symbol instances')
if isinstance(coefficient, Constant):
self._dimension = len(self._symbols)
return self
+ @classmethod
+ def _fromast(cls, node):
+ if isinstance(node, ast.Module):
+ assert len(node.body) == 1
+ return cls._fromast(node.body[0])
+ elif isinstance(node, ast.Expr):
+ return cls._fromast(node.value)
+ elif isinstance(node, ast.Name):
+ return Symbol(node.id)
+ elif isinstance(node, ast.Num):
+ return Constant(node.n)
+ elif isinstance(node, ast.UnaryOp):
+ if isinstance(node.op, ast.USub):
+ return -cls._fromast(node.operand)
+ elif isinstance(node, ast.BinOp):
+ left = cls._fromast(node.left)
+ right = cls._fromast(node.right)
+ if isinstance(node.op, ast.Add):
+ return left + right
+ elif isinstance(node.op, ast.Sub):
+ return left - right
+ elif isinstance(node.op, ast.Mult):
+ return left * right
+ elif isinstance(node.op, ast.Div):
+ return left / right
+ raise SyntaxError('invalid syntax')
+
@classmethod
def fromstring(cls, string):
- raise NotImplementedError
+ string = re.sub(r'(\d+|\))\s*([^\W\d_]\w*|\()',
+ lambda m: '{}*{}'.format(m.group(1), m.group(2)),
+ string)
+ tree = ast.parse(string, 'eval')
+ return cls._fromast(tree)
@property
def symbols(self):
yield self.coefficient(symbol)
yield self.constant
- @property
- def symbol(self):
- raise ValueError('not a symbol: {}'.format(self))
-
def issymbol(self):
return False
def __new__(cls, name):
if isinstance(name, Symbol):
- name = name.symbol
+ name = name.name
elif not isinstance(name, str):
raise TypeError('name must be a string or a Symbol instance')
self = object().__new__(cls)
self._coefficients = {name: 1}
self._constant = 0
self._symbols = tuple(name)
- self._symbol = name
+ self._name = name
self._dimension = 1
return self
@property
- def symbol(self):
- return self._symbol
+ def name(self):
+ return self._name
def issymbol(self):
return True
def __repr__(self):
- return '{}({!r})'.format(self.__class__.__name__, self._symbol)
+ return '{}({!r})'.format(self.__class__.__name__, self._name)
def symbols(names):
if isinstance(names, str):
other = other._toisl(symbols)
difference = libisl.isl_set_subtract(bset, other)
return difference
-
def __sub__(self, other):
return self.difference(other)
return '{{{}}}'.format(', '.join(constraints))
def __repr__(self):
- equalities = list(self.equalities)
- inequalities = list(self.inequalities)
- return '{}(equalities={!r}, inequalities={!r})' \
- ''.format(self.__class__.__name__, equalities, inequalities)
+ if self.isempty():
+ return 'Empty'
+ elif self.isuniverse():
+ return 'Universe'
+ else:
+ equalities = list(self.equalities)
+ inequalities = list(self.inequalities)
+ return '{}(equalities={!r}, inequalities={!r})' \
+ ''.format(self.__class__.__name__, equalities, inequalities)
def _symbolunion(self, *others):
symbols = set(self.symbols)
def _toisl(self, symbols=None):
if symbols is None:
symbols = self.symbols
- num_coefficients = len(symbols)
- space = libisl.isl_space_set_alloc(_main_ctx, 0, num_coefficients)
+ dimension = len(symbols)
+ space = libisl.isl_space_set_alloc(_main_ctx, 0, dimension)
bset = libisl.isl_basic_set_universe(libisl.isl_space_copy(space))
ls = libisl.isl_local_space_from_space(space)
- #if there are equalities/inequalities, take each constant and coefficient and add as a constraint to the basic set
- for eq in self.equalities:
+ for equality in self.equalities:
ceq = libisl.isl_equality_alloc(libisl.isl_local_space_copy(ls))
- coeff_eq = dict(eq.coefficients())
- if eq.constant:
- value = str(eq.constant).encode()
- val = libisl.isl_val_read_from_str(_main_ctx, value)
+ for symbol, coefficient in equality.coefficients():
+ val = str(coefficient).encode()
+ val = libisl.isl_val_read_from_str(_main_ctx, val)
+ dim = symbols.index(symbol)
+ ceq = libisl.isl_constraint_set_coefficient_val(ceq, libisl.isl_dim_set, dim, val)
+ if equality.constant != 0:
+ val = str(equality.constant).encode()
+ val = libisl.isl_val_read_from_str(_main_ctx, val)
ceq = libisl.isl_constraint_set_constant_val(ceq, val)
- for eq in coeff_eq:
- number = str(coeff_eq.get(eq)).encode()
- num = libisl.isl_val_read_from_str(_main_ctx, number)
- iden = symbols.index(eq)
- ceq = libisl.isl_constraint_set_coefficient_val(ceq, libisl.isl_dim_set, iden, num) #use 3 for type isl_dim_set
- bset = libisl.isl_basic_set_add_constraint(bset, ceq)
- for ineq in self.inequalities:
+ bset = libisl.isl_basic_set_add_constraint(bset, ceq)
+ for inequality in self.inequalities:
cin = libisl.isl_inequality_alloc(libisl.isl_local_space_copy(ls))
- coeff_in = dict(ineq.coefficients())
- if ineq.constant:
- value = str(ineq.constant).encode()
- val = libisl.isl_val_read_from_str(_main_ctx, value)
+ for symbol, coefficient in inequality.coefficients():
+ val = str(coefficient).encode()
+ val = libisl.isl_val_read_from_str(_main_ctx, val)
+ dim = symbols.index(symbol)
+ cin = libisl.isl_constraint_set_coefficient_val(cin, libisl.isl_dim_set, dim, val)
+ if inequality.constant != 0:
+ val = str(ineq.constant).encode()
+ val = libisl.isl_val_read_from_str(_main_ctx, val)
cin = libisl.isl_constraint_set_constant_val(cin, val)
- for ineq in coeff_in:
- number = str(coeff_in.get(ineq)).encode()
- num = libisl.isl_val_read_from_str(_main_ctx, number)
- iden = symbols.index(ineq)
- cin = libisl.isl_constraint_set_coefficient_val(cin, libisl.isl_dim_set, iden, num) #use 3 for type isl_dim_set
- bset = libisl.isl_basic_set_add_constraint(bset, cin)
+ bset = libisl.isl_basic_set_add_constraint(bset, cin)
bset = isl.BasicSet(bset)
return bset
@classmethod
- def _fromisl(cls, bset):
+ def _fromisl(cls, bset, symbols):
raise NotImplementedError
equalities = ...
inequalities = ...
our printer is giving form as:
{ [i0, i1] : 2i1 >= -2 - i0 } '''
-empty = None #eq(0,1)
-universe = None #Polyhedron()
+Empty = eq(0,1)
+Universe = Polyhedron()
if __name__ == '__main__':
- ex1 = Expression(coefficients={'a': 6, 'b': 6}, constant= 3) #this is the expression that does not work (even without adding values)
- ex2 = Expression(coefficients={'x': 4, 'y': 2}, constant= 3)
- p = Polyhedron(equalities=[ex2])
- p2 = Polyhedron(equalities=[ex2])
- print(p._toisl()) # checking is values works for toisl
+ e1 = Expression('2a + 2b + 1')
+ p1 = Polyhedron(equalities=[e1]) # empty
+ e2 = Expression('3x + 2y + 3')
+ p2 = Polyhedron(equalities=[e2]) # not empty
+ print(p1._toisl())
+ print(p2._toisl())