+import ast
import functools
import numbers
+import re
from fractions import Fraction, gcd
self._dimension = len(self._symbols)
return self
+ @classmethod
+ def _fromast(cls, node):
+ if isinstance(node, ast.Module):
+ assert len(node.body) == 1
+ return cls._fromast(node.body[0])
+ elif isinstance(node, ast.Expr):
+ return cls._fromast(node.value)
+ elif isinstance(node, ast.Name):
+ return Symbol(node.id)
+ elif isinstance(node, ast.Num):
+ return Constant(node.n)
+ elif isinstance(node, ast.UnaryOp):
+ if isinstance(node.op, ast.USub):
+ return -cls._fromast(node.operand)
+ elif isinstance(node, ast.BinOp):
+ left = cls._fromast(node.left)
+ right = cls._fromast(node.right)
+ if isinstance(node.op, ast.Add):
+ return left + right
+ elif isinstance(node.op, ast.Sub):
+ return left - right
+ elif isinstance(node.op, ast.Mult):
+ return left * right
+ elif isinstance(node.op, ast.Div):
+ return left / right
+ raise SyntaxError('invalid syntax')
+
@classmethod
def fromstring(cls, string):
- raise NotImplementedError
+ string = re.sub(r'(\d+|\))\s*([^\W\d_]\w*|\()',
+ lambda m: '{}*{}'.format(m.group(1), m.group(2)),
+ string)
+ tree = ast.parse(string, 'eval')
+ return cls._fromast(tree)
@property
def symbols(self):
return bset
@classmethod
- def _fromisl(cls, bset):
+ def _fromisl(cls, bset, symbols):
raise NotImplementedError
equalities = ...
inequalities = ...
Universe = Polyhedron()
if __name__ == '__main__':
- e1 = Expression(coefficients={'a': 2, 'b': 2}, constant= 1)
+ e1 = Expression('2a + 2b + 1')
p1 = Polyhedron(equalities=[e1]) # empty
- e2 = Expression(coefficients={'x': 3, 'y': 2}, constant= 3)
+ e2 = Expression('3x + 2y + 3')
p2 = Polyhedron(equalities=[e2]) # not empty
print(p1._toisl())
print(p2._toisl())