-
import functools
+import math
import numbers
from . import islhelper
from .islhelper import mainctx, libisl
+from .geometry import GeometricObject, Point, Vector
from .linexprs import Expression, Symbol, Rational
from .domains import Domain
if inequalities is not None:
raise TypeError('too many arguments')
return cls.fromstring(equalities)
- elif isinstance(equalities, Polyhedron):
- if inequalities is not None:
- raise TypeError('too many arguments')
- return equalities
- elif isinstance(equalities, Domain):
+ elif isinstance(equalities, GeometricObject):
if inequalities is not None:
raise TypeError('too many arguments')
return equalities.aspolyhedron()
def aspolyhedron(self):
return self
+ def __contains__(self, point):
+ if not isinstance(point, Point):
+ raise TypeError('point must be a Point instance')
+ if self.symbols != point.symbols:
+ raise ValueError('arguments must belong to the same space')
+ for equality in self.equalities:
+ if equality.subs(point.coordinates()) != 0:
+ return False
+ for inequality in self.inequalities:
+ if inequality.subs(point.coordinates()) < 0:
+ return False
+ return True
+
def subs(self, symbol, expression=None):
equalities = [equality.subs(symbol, expression)
for equality in self.equalities]
else:
strings = []
for equality in self.equalities:
- strings.append('0 == {}'.format(equality))
+ strings.append('Eq({}, 0)'.format(equality))
for inequality in self.inequalities:
- strings.append('0 <= {}'.format(inequality))
+ strings.append('Ge({}, 0)'.format(inequality))
if len(strings) == 1:
return strings[0]
else:
return 'And({})'.format(', '.join(strings))
+ def _repr_latex_(self):
+ if self.isempty():
+ return '$\\emptyset$'
+ elif self.isuniverse():
+ return '$\\Omega$'
+ else:
+ strings = []
+ for equality in self.equalities:
+ strings.append('{} = 0'.format(equality._repr_latex_().strip('$')))
+ for inequality in self.inequalities:
+ strings.append('{} \\ge 0'.format(inequality._repr_latex_().strip('$')))
+ return '${}$'.format(' \\wedge '.join(strings))
+
@classmethod
def fromsympy(cls, expr):
domain = Domain.fromsympy(expr)
for inequality in self.inequalities:
constraints.append(sympy.Ge(inequality.tosympy(), 0))
return sympy.And(*constraints)
-
+
+ @classmethod
+ def _polygon_inner_point(cls, points):
+ symbols = points[0].symbols
+ coordinates = {symbol: 0 for symbol in symbols}
+ for point in points:
+ for symbol, coordinate in point.coordinates():
+ coordinates[symbol] += coordinate
+ for symbol in symbols:
+ coordinates[symbol] /= len(points)
+ return Point(coordinates)
+
+ @classmethod
+ def _sort_polygon_2d(cls, points):
+ if len(points) <= 3:
+ return points
+ o = cls._polygon_inner_point(points)
+ angles = {}
+ for m in points:
+ om = Vector(o, m)
+ dx, dy = (coordinate for symbol, coordinate in om.coordinates())
+ angle = math.atan2(dy, dx)
+ angles[m] = angle
+ return sorted(points, key=angles.get)
+
+ @classmethod
+ def _sort_polygon_3d(cls, points):
+ if len(points) <= 3:
+ return points
+ o = cls._polygon_inner_point(points)
+ a = points[0]
+ oa = Vector(o, a)
+ norm_oa = oa.norm()
+ for b in points[1:]:
+ ob = Vector(o, b)
+ u = oa.cross(ob)
+ if not u.isnull():
+ u = u.asunit()
+ break
+ else:
+ raise ValueError('degenerate polygon')
+ angles = {a: 0.}
+ for m in points[1:]:
+ om = Vector(o, m)
+ normprod = norm_oa * om.norm()
+ cosinus = oa.dot(om) / normprod
+ sinus = u.dot(oa.cross(om)) / normprod
+ angle = math.acos(cosinus)
+ angle = math.copysign(angle, sinus)
+ angles[m] = angle
+ return sorted(points, key=angles.get)
+
+ def faces(self):
+ vertices = self.vertices()
+ faces = []
+ for constraint in self.constraints:
+ face = []
+ for vertex in vertices:
+ if constraint.subs(vertex.coordinates()) == 0:
+ face.append(vertex)
+ faces.append(face)
+ return faces
+
def plot(self):
import matplotlib.pyplot as plt
from matplotlib.path import Path
import matplotlib.patches as patches
-
+
if len(self.symbols)> 3:
raise TypeError
-
+
elif len(self.symbols) == 2:
verts = self.vertices()
points = []
- codes = [Path.MOVETO]
+ codes = [Path.MOVETO]
for vert in verts:
pairs = ()
for sym in sorted(vert, key=Symbol.sortkey):
ax.set_xlim(-5,5)
ax.set_ylim(-5,5)
plt.show()
-
+
elif len(self.symbols)==3:
return 0
-
+
return points
def _polymorphic(func):
@functools.wraps(func)
def wrapper(left, right):
- if isinstance(left, numbers.Rational):
- left = Rational(left)
- elif not isinstance(left, Expression):
- raise TypeError('left must be a a rational number '
- 'or a linear expression')
- if isinstance(right, numbers.Rational):
- right = Rational(right)
- elif not isinstance(right, Expression):
- raise TypeError('right must be a a rational number '
- 'or a linear expression')
+ if not isinstance(left, Expression):
+ if isinstance(left, numbers.Rational):
+ left = Rational(left)
+ else:
+ raise TypeError('left must be a a rational number '
+ 'or a linear expression')
+ if not isinstance(right, Expression):
+ if isinstance(right, numbers.Rational):
+ right = Rational(right)
+ else:
+ raise TypeError('right must be a a rational number '
+ 'or a linear expression')
return func(left, right)
return wrapper