5 from fractions
import Fraction
7 from . import islhelper
8 from .islhelper
import mainctx
, libisl
, isl_set_basic_sets
9 from .linexprs
import Expression
, Symbol
18 @functools.total_ordering
27 def __new__(cls
, *polyhedra
):
28 from .polyhedra
import Polyhedron
29 if len(polyhedra
) == 1:
30 polyhedron
= polyhedra
[0]
31 if isinstance(polyhedron
, str):
32 return cls
.fromstring(polyhedron
)
33 elif isinstance(polyhedron
, Polyhedron
):
36 raise TypeError('argument must be a string '
37 'or a Polyhedron instance')
39 for polyhedron
in polyhedra
:
40 if not isinstance(polyhedron
, Polyhedron
):
41 raise TypeError('arguments must be Polyhedron instances')
42 symbols
= cls
._xsymbols
(polyhedra
)
43 islset
= cls
._toislset
(polyhedra
, symbols
)
44 return cls
._fromislset
(islset
, symbols
)
47 def _xsymbols(cls
, iterator
):
49 Return the ordered tuple of symbols present in iterator.
53 symbols
.update(item
.symbols
)
54 return tuple(sorted(symbols
, key
=Symbol
.sortkey
))
58 return self
._polyhedra
66 return self
._dimension
69 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
70 islset
= libisl
.isl_set_make_disjoint(mainctx
, islset
)
71 return self
._fromislset
(islset
, self
.symbols
)
74 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
75 empty
= bool(libisl
.isl_set_is_empty(islset
))
76 libisl
.isl_set_free(islset
)
80 return not self
.isempty()
83 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
84 universe
= bool(libisl
.isl_set_plain_is_universe(islset
))
85 libisl
.isl_set_free(islset
)
89 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
90 bounded
= bool(libisl
.isl_set_is_bounded(islset
))
91 libisl
.isl_set_free(islset
)
94 def __eq__(self
, other
):
95 symbols
= self
._xsymbols
([self
, other
])
96 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
97 islset2
= other
._toislset
(other
.polyhedra
, symbols
)
98 equal
= bool(libisl
.isl_set_is_equal(islset1
, islset2
))
99 libisl
.isl_set_free(islset1
)
100 libisl
.isl_set_free(islset2
)
103 def isdisjoint(self
, other
):
104 symbols
= self
._xsymbols
([self
, other
])
105 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
106 islset2
= self
._toislset
(other
.polyhedra
, symbols
)
107 equal
= bool(libisl
.isl_set_is_disjoint(islset1
, islset2
))
108 libisl
.isl_set_free(islset1
)
109 libisl
.isl_set_free(islset2
)
112 def issubset(self
, other
):
113 symbols
= self
._xsymbols
([self
, other
])
114 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
115 islset2
= self
._toislset
(other
.polyhedra
, symbols
)
116 equal
= bool(libisl
.isl_set_is_subset(islset1
, islset2
))
117 libisl
.isl_set_free(islset1
)
118 libisl
.isl_set_free(islset2
)
121 def __le__(self
, other
):
122 return self
.issubset(other
)
124 def __lt__(self
, other
):
125 symbols
= self
._xsymbols
([self
, other
])
126 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
127 islset2
= self
._toislset
(other
.polyhedra
, symbols
)
128 equal
= bool(libisl
.isl_set_is_strict_subset(islset1
, islset2
))
129 libisl
.isl_set_free(islset1
)
130 libisl
.isl_set_free(islset2
)
133 def complement(self
):
134 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
135 islset
= libisl
.isl_set_complement(islset
)
136 return self
._fromislset
(islset
, self
.symbols
)
138 def __invert__(self
):
139 return self
.complement()
142 #does not change anything in any of the examples
143 #isl seems to do this naturally
144 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
145 islset
= libisl
.isl_set_remove_redundancies(islset
)
146 return self
._fromislset
(islset
, self
.symbols
)
148 def aspolyhedron(self
):
149 # several types of hull are available
150 # polyhedral seems to be the more appropriate, to be checked
151 from .polyhedra
import Polyhedron
152 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
153 islbset
= libisl
.isl_set_polyhedral_hull(islset
)
154 return Polyhedron
._fromislbasicset
(islbset
, self
.symbols
)
156 def project(self
, dims
):
157 # use to remove certain variables
158 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
160 for index
, symbol
in reversed(list(enumerate(self
.symbols
))):
164 islset
= libisl
.isl_set_project_out(islset
, libisl
.isl_dim_set
, index
+ 1, n
)
167 islset
= libisl
.isl_set_project_out(islset
, libisl
.isl_dim_set
, 0, n
)
168 dims
= [symbol
for symbol
in self
.symbols
if symbol
not in dims
]
169 return Domain
._fromislset
(islset
, dims
)
172 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
173 islpoint
= libisl
.isl_set_sample_point(islset
)
174 if bool(libisl
.isl_point_is_void(islpoint
)):
175 libisl
.isl_point_free(islpoint
)
176 raise ValueError('domain must be non-empty')
178 for index
, symbol
in enumerate(self
.symbols
):
179 coordinate
= libisl
.isl_point_get_coordinate_val(islpoint
,
180 libisl
.isl_dim_set
, index
)
181 coordinate
= islhelper
.isl_val_to_int(coordinate
)
182 point
[symbol
] = coordinate
183 libisl
.isl_point_free(islpoint
)
186 def intersection(self
, *others
):
189 symbols
= self
._xsymbols
((self
,) + others
)
190 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
192 islset2
= other
._toislset
(other
.polyhedra
, symbols
)
193 islset1
= libisl
.isl_set_intersect(islset1
, islset2
)
194 return self
._fromislset
(islset1
, symbols
)
196 def __and__(self
, other
):
197 return self
.intersection(other
)
199 def union(self
, *others
):
202 symbols
= self
._xsymbols
((self
,) + others
)
203 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
205 islset2
= other
._toislset
(other
.polyhedra
, symbols
)
206 islset1
= libisl
.isl_set_union(islset1
, islset2
)
207 return self
._fromislset
(islset1
, symbols
)
209 def __or__(self
, other
):
210 return self
.union(other
)
212 def __add__(self
, other
):
213 return self
.union(other
)
215 def difference(self
, other
):
216 symbols
= self
._xsymbols
([self
, other
])
217 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
218 islset2
= other
._toislset
(other
.polyhedra
, symbols
)
219 islset
= libisl
.isl_set_subtract(islset1
, islset2
)
220 return self
._fromislset
(islset
, symbols
)
222 def __sub__(self
, other
):
223 return self
.difference(other
)
226 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
227 islset
= libisl
.isl_set_lexmin(islset
)
228 return self
._fromislset
(islset
, self
.symbols
)
231 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
232 islset
= libisl
.isl_set_lexmax(islset
)
233 return self
._fromislset
(islset
, self
.symbols
)
235 def num_parameters(self
):
236 #could be useful with large, complicated polyhedrons
237 islbset
= self
._toislbasicset
(self
.equalities
, self
.inequalities
, self
.symbols
)
238 num
= libisl
.isl_basic_set_dim(islbset
, libisl
.isl_dim_set
)
241 def involves_dims(self
, dims
):
242 #could be useful with large, complicated polyhedrons
243 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
245 symbols
= sorted(list(self
.symbols
))
250 first
= symbols
.index(dims
[0])
256 value
= bool(libisl
.isl_set_involves_dims(islset
, libisl
.isl_dim_set
, first
, n
))
257 libisl
.isl_set_free(islset
)
260 _RE_COORDINATE
= re
.compile(r
'\((?P<num>\-?\d+)\)(/(?P<den>\d+))?')
263 #returning list of verticies
264 from .polyhedra
import Polyhedron
265 islbset
= self
._toislbasicset
(self
.equalities
, self
.inequalities
, self
.symbols
)
266 vertices
= libisl
.isl_basic_set_compute_vertices(islbset
);
267 vertices
= islhelper
.isl_vertices_vertices(vertices
)
269 for vertex
in vertices
:
270 expr
= libisl
.isl_vertex_get_expr(vertex
);
271 if islhelper
.isl_version
< '0.13':
272 #pass bset from expr to points to get verticies
273 exp
= Polyhedron
._fromislbasicset
(expr
, self
.symbols
)
274 points
.append(exp
.points())
276 # horrible hack, find a cleaner solution
277 string
= islhelper
.isl_multi_aff_to_str(expr
)
278 matches
= self
._RE
_COORDINATE
.finditer(string
)
280 for symbol
, match
in zip(self
.symbols
, matches
):
281 numerator
= int(match
.group('num'))
282 denominator
= match
.group('den')
283 denominator
= 1 if denominator
is None else int(denominator
)
284 coordinate
= Fraction(numerator
, denominator
)
285 point
[symbol
] = coordinate
290 if not self
.isbounded():
291 raise ValueError('domain must be bounded')
292 from .polyhedra
import Universe
, Eq
293 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
294 islpoints
= islhelper
.isl_set_points(islset
)
296 for islpoint
in islpoints
:
298 for index
, symbol
in enumerate(self
.symbols
):
299 coordinate
= libisl
.isl_point_get_coordinate_val(islpoint
,
300 libisl
.isl_dim_set
, index
)
301 coordinate
= islhelper
.isl_val_to_int(coordinate
)
302 point
[symbol
] = coordinate
306 def subs(self
, symbol
, expression
=None):
307 polyhedra
= [polyhedron
.subs(symbol
, expression
)
308 for polyhedron
in self
.polyhedra
]
309 return Domain(*polyhedra
)
312 def _fromislset(cls
, islset
, symbols
):
313 from .polyhedra
import Polyhedron
314 islset
= libisl
.isl_set_remove_divs(islset
)
315 islbsets
= isl_set_basic_sets(islset
)
316 libisl
.isl_set_free(islset
)
318 for islbset
in islbsets
:
319 polyhedron
= Polyhedron
._fromislbasicset
(islbset
, symbols
)
320 polyhedra
.append(polyhedron
)
321 if len(polyhedra
) == 0:
322 from .polyhedra
import Empty
324 elif len(polyhedra
) == 1:
327 self
= object().__new
__(Domain
)
328 self
._polyhedra
= tuple(polyhedra
)
329 self
._symbols
= cls
._xsymbols
(polyhedra
)
330 self
._dimension
= len(self
._symbols
)
334 def _toislset(cls
, polyhedra
, symbols
):
335 polyhedron
= polyhedra
[0]
336 islbset
= polyhedron
._toislbasicset
(polyhedron
.equalities
,
337 polyhedron
.inequalities
, symbols
)
338 islset1
= libisl
.isl_set_from_basic_set(islbset
)
339 for polyhedron
in polyhedra
[1:]:
340 islbset
= polyhedron
._toislbasicset
(polyhedron
.equalities
,
341 polyhedron
.inequalities
, symbols
)
342 islset2
= libisl
.isl_set_from_basic_set(islbset
)
343 islset1
= libisl
.isl_set_union(islset1
, islset2
)
347 def _fromast(cls
, node
):
348 from .polyhedra
import Polyhedron
349 if isinstance(node
, ast
.Module
) and len(node
.body
) == 1:
350 return cls
._fromast
(node
.body
[0])
351 elif isinstance(node
, ast
.Expr
):
352 return cls
._fromast
(node
.value
)
353 elif isinstance(node
, ast
.UnaryOp
):
354 domain
= cls
._fromast
(node
.operand
)
355 if isinstance(node
.operand
, ast
.invert
):
357 elif isinstance(node
, ast
.BinOp
):
358 domain1
= cls
._fromast
(node
.left
)
359 domain2
= cls
._fromast
(node
.right
)
360 if isinstance(node
.op
, ast
.BitAnd
):
361 return And(domain1
, domain2
)
362 elif isinstance(node
.op
, ast
.BitOr
):
363 return Or(domain1
, domain2
)
364 elif isinstance(node
, ast
.Compare
):
367 left
= Expression
._fromast
(node
.left
)
368 for i
in range(len(node
.ops
)):
370 right
= Expression
._fromast
(node
.comparators
[i
])
371 if isinstance(op
, ast
.Lt
):
372 inequalities
.append(right
- left
- 1)
373 elif isinstance(op
, ast
.LtE
):
374 inequalities
.append(right
- left
)
375 elif isinstance(op
, ast
.Eq
):
376 equalities
.append(left
- right
)
377 elif isinstance(op
, ast
.GtE
):
378 inequalities
.append(left
- right
)
379 elif isinstance(op
, ast
.Gt
):
380 inequalities
.append(left
- right
- 1)
385 return Polyhedron(equalities
, inequalities
)
386 raise SyntaxError('invalid syntax')
388 _RE_BRACES
= re
.compile(r
'^\{\s*|\s*\}$')
389 _RE_EQ
= re
.compile(r
'([^<=>])=([^<=>])')
390 _RE_AND
= re
.compile(r
'\band\b|,|&&|/\\|∧|∩')
391 _RE_OR
= re
.compile(r
'\bor\b|;|\|\||\\/|∨|∪')
392 _RE_NOT
= re
.compile(r
'\bnot\b|!|¬')
393 _RE_NUM_VAR
= Expression
._RE
_NUM
_VAR
394 _RE_OPERATORS
= re
.compile(r
'(&|\||~)')
397 def fromstring(cls
, string
):
398 # remove curly brackets
399 string
= cls
._RE
_BRACES
.sub(r
'', string
)
400 # replace '=' by '=='
401 string
= cls
._RE
_EQ
.sub(r
'\1==\2', string
)
402 # replace 'and', 'or', 'not'
403 string
= cls
._RE
_AND
.sub(r
' & ', string
)
404 string
= cls
._RE
_OR
.sub(r
' | ', string
)
405 string
= cls
._RE
_NOT
.sub(r
' ~', string
)
406 # add implicit multiplication operators, e.g. '5x' -> '5*x'
407 string
= cls
._RE
_NUM
_VAR
.sub(r
'\1*\2', string
)
408 # add parentheses to force precedence
409 tokens
= cls
._RE
_OPERATORS
.split(string
)
410 for i
, token
in enumerate(tokens
):
412 token
= '({})'.format(token
)
414 string
= ''.join(tokens
)
415 tree
= ast
.parse(string
, 'eval')
416 return cls
._fromast
(tree
)
419 assert len(self
.polyhedra
) >= 2
420 strings
= [repr(polyhedron
) for polyhedron
in self
.polyhedra
]
421 return 'Or({})'.format(', '.join(strings
))
424 def fromsympy(cls
, expr
):
426 from .polyhedra
import Lt
, Le
, Eq
, Ne
, Ge
, Gt
428 sympy
.And
: And
, sympy
.Or
: Or
, sympy
.Not
: Not
,
429 sympy
.Lt
: Lt
, sympy
.Le
: Le
,
430 sympy
.Eq
: Eq
, sympy
.Ne
: Ne
,
431 sympy
.Ge
: Ge
, sympy
.Gt
: Gt
,
433 if expr
.func
in funcmap
:
434 args
= [Domain
.fromsympy(arg
) for arg
in expr
.args
]
435 return funcmap
[expr
.func
](*args
)
436 elif isinstance(expr
, sympy
.Expr
):
437 return Expression
.fromsympy(expr
)
438 raise ValueError('non-domain expression: {!r}'.format(expr
))
442 polyhedra
= [polyhedron
.tosympy() for polyhedron
in polyhedra
]
443 return sympy
.Or(*polyhedra
)
447 if len(domains
) == 0:
448 from .polyhedra
import Universe
451 return domains
[0].intersection(*domains
[1:])
454 if len(domains
) == 0:
455 from .polyhedra
import Empty
458 return domains
[0].union(*domains
[1:])