5 from . import islhelper
7 from .islhelper
import mainctx
, libisl
8 from .geometry
import GeometricObject
, Point
9 from .linexprs
import Expression
, Rational
10 from .domains
import Domain
15 'Lt', 'Le', 'Eq', 'Ne', 'Ge', 'Gt',
20 class Polyhedron(Domain
):
30 def __new__(cls
, equalities
=None, inequalities
=None):
31 if isinstance(equalities
, str):
32 if inequalities
is not None:
33 raise TypeError('too many arguments')
34 return cls
.fromstring(equalities
)
35 elif isinstance(equalities
, GeometricObject
):
36 if inequalities
is not None:
37 raise TypeError('too many arguments')
38 return equalities
.aspolyhedron()
39 if equalities
is None:
42 for i
, equality
in enumerate(equalities
):
43 if not isinstance(equality
, Expression
):
44 raise TypeError('equalities must be linear expressions')
45 equalities
[i
] = equality
.scaleint()
46 if inequalities
is None:
49 for i
, inequality
in enumerate(inequalities
):
50 if not isinstance(inequality
, Expression
):
51 raise TypeError('inequalities must be linear expressions')
52 inequalities
[i
] = inequality
.scaleint()
53 symbols
= cls
._xsymbols
(equalities
+ inequalities
)
54 islbset
= cls
._toislbasicset
(equalities
, inequalities
, symbols
)
55 return cls
._fromislbasicset
(islbset
, symbols
)
59 return self
._equalities
62 def inequalities(self
):
63 return self
._inequalities
66 def constraints(self
):
67 return self
._constraints
75 Return this set as disjoint.
81 Return true if this set is the Universe set.
83 islbset
= self
._toislbasicset
(self
.equalities
, self
.inequalities
,
85 universe
= bool(libisl
.isl_basic_set_is_universe(islbset
))
86 libisl
.isl_basic_set_free(islbset
)
89 def aspolyhedron(self
):
91 Return polyhedral hull of this set.
95 def __contains__(self
, point
):
96 if not isinstance(point
, Point
):
97 raise TypeError('point must be a Point instance')
98 if self
.symbols
!= point
.symbols
:
99 raise ValueError('arguments must belong to the same space')
100 for equality
in self
.equalities
:
101 if equality
.subs(point
.coordinates()) != 0:
103 for inequality
in self
.inequalities
:
104 if inequality
.subs(point
.coordinates()) < 0:
108 def subs(self
, symbol
, expression
=None):
109 equalities
= [equality
.subs(symbol
, expression
)
110 for equality
in self
.equalities
]
111 inequalities
= [inequality
.subs(symbol
, expression
)
112 for inequality
in self
.inequalities
]
113 return Polyhedron(equalities
, inequalities
)
116 def _fromislbasicset(cls
, islbset
, symbols
):
117 islconstraints
= islhelper
.isl_basic_set_constraints(islbset
)
120 for islconstraint
in islconstraints
:
121 constant
= libisl
.isl_constraint_get_constant_val(islconstraint
)
122 constant
= islhelper
.isl_val_to_int(constant
)
124 for index
, symbol
in enumerate(symbols
):
125 coefficient
= libisl
.isl_constraint_get_coefficient_val(islconstraint
,
126 libisl
.isl_dim_set
, index
)
127 coefficient
= islhelper
.isl_val_to_int(coefficient
)
129 coefficients
[symbol
] = coefficient
130 expression
= Expression(coefficients
, constant
)
131 if libisl
.isl_constraint_is_equality(islconstraint
):
132 equalities
.append(expression
)
134 inequalities
.append(expression
)
135 libisl
.isl_basic_set_free(islbset
)
136 self
= object().__new
__(Polyhedron
)
137 self
._equalities
= tuple(equalities
)
138 self
._inequalities
= tuple(inequalities
)
139 self
._constraints
= tuple(equalities
+ inequalities
)
140 self
._symbols
= cls
._xsymbols
(self
._constraints
)
141 self
._dimension
= len(self
._symbols
)
145 def _toislbasicset(cls
, equalities
, inequalities
, symbols
):
146 dimension
= len(symbols
)
147 indices
= {symbol
: index
for index
, symbol
in enumerate(symbols
)}
148 islsp
= libisl
.isl_space_set_alloc(mainctx
, 0, dimension
)
149 islbset
= libisl
.isl_basic_set_universe(libisl
.isl_space_copy(islsp
))
150 islls
= libisl
.isl_local_space_from_space(islsp
)
151 for equality
in equalities
:
152 isleq
= libisl
.isl_equality_alloc(libisl
.isl_local_space_copy(islls
))
153 for symbol
, coefficient
in equality
.coefficients():
154 islval
= str(coefficient
).encode()
155 islval
= libisl
.isl_val_read_from_str(mainctx
, islval
)
156 index
= indices
[symbol
]
157 isleq
= libisl
.isl_constraint_set_coefficient_val(isleq
,
158 libisl
.isl_dim_set
, index
, islval
)
159 if equality
.constant
!= 0:
160 islval
= str(equality
.constant
).encode()
161 islval
= libisl
.isl_val_read_from_str(mainctx
, islval
)
162 isleq
= libisl
.isl_constraint_set_constant_val(isleq
, islval
)
163 islbset
= libisl
.isl_basic_set_add_constraint(islbset
, isleq
)
164 for inequality
in inequalities
:
165 islin
= libisl
.isl_inequality_alloc(libisl
.isl_local_space_copy(islls
))
166 for symbol
, coefficient
in inequality
.coefficients():
167 islval
= str(coefficient
).encode()
168 islval
= libisl
.isl_val_read_from_str(mainctx
, islval
)
169 index
= indices
[symbol
]
170 islin
= libisl
.isl_constraint_set_coefficient_val(islin
,
171 libisl
.isl_dim_set
, index
, islval
)
172 if inequality
.constant
!= 0:
173 islval
= str(inequality
.constant
).encode()
174 islval
= libisl
.isl_val_read_from_str(mainctx
, islval
)
175 islin
= libisl
.isl_constraint_set_constant_val(islin
, islval
)
176 islbset
= libisl
.isl_basic_set_add_constraint(islbset
, islin
)
180 def fromstring(cls
, string
):
181 domain
= Domain
.fromstring(string
)
182 if not isinstance(domain
, Polyhedron
):
183 raise ValueError('non-polyhedral expression: {!r}'.format(string
))
189 elif self
.isuniverse():
193 for equality
in self
.equalities
:
194 strings
.append('Eq({}, 0)'.format(equality
))
195 for inequality
in self
.inequalities
:
196 strings
.append('Ge({}, 0)'.format(inequality
))
197 if len(strings
) == 1:
200 return 'And({})'.format(', '.join(strings
))
202 def _repr_latex_(self
):
204 return '$\\emptyset$'
205 elif self
.isuniverse():
209 for equality
in self
.equalities
:
210 strings
.append('{} = 0'.format(equality
._repr
_latex
_().strip('$')))
211 for inequality
in self
.inequalities
:
212 strings
.append('{} \\ge 0'.format(inequality
._repr
_latex
_().strip('$')))
213 return '${}$'.format(' \\wedge '.join(strings
))
216 def fromsympy(cls
, expr
):
217 domain
= Domain
.fromsympy(expr
)
218 if not isinstance(domain
, Polyhedron
):
219 raise ValueError('non-polyhedral expression: {!r}'.format(expr
))
225 for equality
in self
.equalities
:
226 constraints
.append(sympy
.Eq(equality
.tosympy(), 0))
227 for inequality
in self
.inequalities
:
228 constraints
.append(sympy
.Ge(inequality
.tosympy(), 0))
229 return sympy
.And(*constraints
)
231 def _polymorphic(func
):
232 @functools.wraps(func
)
233 def wrapper(left
, right
):
234 if not isinstance(left
, Expression
):
235 if isinstance(left
, numbers
.Rational
):
236 left
= Rational(left
)
238 raise TypeError('left must be a a rational number '
239 'or a linear expression')
240 if not isinstance(right
, Expression
):
241 if isinstance(right
, numbers
.Rational
):
242 right
= Rational(right
)
244 raise TypeError('right must be a a rational number '
245 'or a linear expression')
246 return func(left
, right
)
252 Return true if the first set is less than the second.
254 return Polyhedron([], [right
- left
- 1])
259 Return true the first set is less than or equal to the second.
261 return Polyhedron([], [right
- left
])
266 Return true if the sets are equal.
268 return Polyhedron([left
- right
], [])
273 Return true if the sets are NOT equal.
275 return ~
Eq(left
, right
)
280 Return true if the first set is greater than the second set.
282 return Polyhedron([], [left
- right
- 1])
287 Return true if the first set is greater than or equal the second set.
289 return Polyhedron([], [left
- right
])
294 Universe
= Polyhedron([])