Plot domain added
[linpy.git] / examples / squares.py
1 #!/usr/bin/env python3
2
3 from pypol import *
4
5 a, x, y, z = symbols('a x y z')
6
7 sq1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2)
8 sq2 = Le(2, x) & Le(x, 4) & Le(2, y) & Le(y, 4)
9 sq3 = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3)
10 sq4 = Le(1, x) & Le(x, 2) & Le(1, y) & Le(y, 2)
11 sq5 = Le(1, x) & Le(x, 2) & Le(1, y)
12 sq6 = Le(1, x) & Le(x, 2) & Le(1, y) & Le(y, 3)
13 sq7 = Le(0, x) & Le(x, 2) & Le(0, y) & Eq(z, 2) & Le(a, 3)
14 p = Le(2*x+1, y) & Le(-2*x-1, y) & Le(y, 1)
15
16
17 universe = Polyhedron([])
18 q = sq1 - sq2
19 e = Empty
20
21 print('sq1 =', sq1) #print correct square
22 print('sq2 =', sq2) #print correct square
23 print('sq3 =', sq3) #print correct square
24 print('sq4 =', sq4) #print correct square
25 print('universe =', universe) #print correct square
26 print()
27 print('¬sq1 =', ~sq1) #test complement
28 print()
29 print('sq1 + sq1 =', sq1 + sq2) #test addition
30 print('sq1 + sq2 =', Polyhedron(sq1 + sq2)) #test addition
31 print()
32 print('universe + universe =', universe + universe)#test addition
33 print('universe - universe =', universe - universe) #test subtraction
34 print()
35 print('sq2 - sq1 =', sq2 - sq1) #test subtraction
36 print('sq2 - sq1 =', Polyhedron(sq2 - sq1)) #test subtraction
37 print('sq1 - sq1 =', Polyhedron(sq1 - sq1)) #test subtraction
38 print()
39 print('sq1 ∩ sq2 =', sq1 & sq2) #test intersection
40 print('sq1 ∪ sq2 =', sq1 | sq2) #test union
41 print()
42 print('sq1 ⊔ sq2 =', Polyhedron(sq1 | sq2)) # test convex union
43 print()
44 print('check if sq1 and sq2 disjoint:', sq1.isdisjoint(sq2)) #should return false
45 print()
46 print('sq1 disjoint:', sq1.disjoint()) #make disjoint
47 print('sq2 disjoint:', sq2.disjoint()) #make disjoint
48 print()
49 print('is square 1 universe?:', sq1.isuniverse()) #test if square is universe
50 print('is u universe?:', universe.isuniverse()) #test if square is universe
51 print()
52 print('is sq1 a subset of sq2?:', sq1.issubset(sq2)) #test issubset()
53 print('is sq4 less than sq3?:', sq4.__lt__(sq3)) # test lt(), must be a strict subset
54 print()
55 print('lexographic min of sq1:', sq1.lexmin()) #test lexmin()
56 print('lexographic max of sq1:', sq1.lexmax()) #test lexmin()
57 print()
58 print('lexographic min of sq2:', sq2.lexmin()) #test lexmax()
59 print('lexographic max of sq2:', sq2.lexmax()) #test lexmax()
60 print()
61 print('Polyhedral hull of sq1 + sq2 is:', q.aspolyhedron()) #test polyhedral hull
62 print()
63 print('is sq1 bounded?', sq1.isbounded()) #unbounded should return True
64 print('is sq5 bounded?', sq5.isbounded()) #unbounded should return False
65 print()
66 print('sq6:', sq6)
67 print('sq6 simplified:', sq6.sample())
68 print()
69 print(universe.project([x]))
70 print('sq7 with out constraints involving y and a', sq7.project([a, z, x, y])) #drops dims that are passed
71 print()
72 print('sq1 has {} parameters'.format(sq1.num_parameters()))
73 print()
74 print('does sq1 constraints involve x?', sq1.involves_dims([x]))
75 print()
76 print('the verticies for s are:', p.vertices())
77 print()
78 print(p.plot())