1 # Copyright 2014 MINES ParisTech
3 # This file is part of LinPy.
5 # LinPy is free software: you can redistribute it and/or modify
6 # it under the terms of the GNU General Public License as published by
7 # the Free Software Foundation, either version 3 of the License, or
8 # (at your option) any later version.
10 # LinPy is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 # GNU General Public License for more details.
15 # You should have received a copy of the GNU General Public License
16 # along with LinPy. If not, see <http://www.gnu.org/licenses/>.
23 from fractions
import Fraction
25 from . import islhelper
26 from .islhelper
import mainctx
, libisl
27 from .linexprs
import LinExpr
, Symbol
, Rational
28 from .geometry
import GeometricObject
, Point
, Vector
37 @functools.total_ordering
38 class Domain(GeometricObject
):
40 A domain is a union of polyhedra. Unlike polyhedra, domains allow exact
41 computation of union and complementary operations.
43 A domain with a unique polyhedron is automatically subclassed as a
53 def __new__(cls
, *polyhedra
):
55 Return a domain from a sequence of polyhedra.
57 >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
58 >>> square2 = Polyhedron('2 <= x <= 4, 2 <= y <= 4')
59 >>> dom = Domain([square, square2])
61 It is also possible to build domains from polyhedra using arithmetic
62 operators Domain.__and__(), Domain.__or__() or functions And() and Or(),
63 using one of the following instructions:
65 >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
66 >>> square2 = Polyhedron('2 <= x <= 4, 2 <= y <= 4')
67 >>> dom = square | square2
68 >>> dom = Or(square, square2)
70 Alternatively, a domain can be built from a string:
72 >>> dom = Domain('0 <= x <= 2, 0 <= y <= 2; 2 <= x <= 4, 2 <= y <= 4')
74 Finally, a domain can be built from a GeometricObject instance, calling
75 the GeometricObject.asdomain() method.
77 from .polyhedra
import Polyhedron
78 if len(polyhedra
) == 1:
79 argument
= polyhedra
[0]
80 if isinstance(argument
, str):
81 return cls
.fromstring(argument
)
82 elif isinstance(argument
, GeometricObject
):
83 return argument
.aspolyhedron()
85 raise TypeError('argument must be a string '
86 'or a GeometricObject instance')
88 for polyhedron
in polyhedra
:
89 if not isinstance(polyhedron
, Polyhedron
):
90 raise TypeError('arguments must be Polyhedron instances')
91 symbols
= cls
._xsymbols
(polyhedra
)
92 islset
= cls
._toislset
(polyhedra
, symbols
)
93 return cls
._fromislset
(islset
, symbols
)
96 def _xsymbols(cls
, iterator
):
98 Return the ordered tuple of symbols present in iterator.
101 for item
in iterator
:
102 symbols
.update(item
.symbols
)
103 return tuple(sorted(symbols
, key
=Symbol
.sortkey
))
108 The tuple of polyhedra present in the domain.
110 return self
._polyhedra
115 The tuple of symbols present in the domain equations, sorted according
123 The dimension of the domain, i.e. the number of symbols present in it.
125 return self
._dimension
129 Return True if the domain is empty, that is, equal to Empty.
131 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
132 empty
= bool(libisl
.isl_set_is_empty(islset
))
133 libisl
.isl_set_free(islset
)
138 Return True if the domain is non-empty.
140 return not self
.isempty()
142 def isuniverse(self
):
144 Return True if the domain is universal, that is, equal to Universe.
146 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
147 universe
= bool(libisl
.isl_set_plain_is_universe(islset
))
148 libisl
.isl_set_free(islset
)
153 Return True if the domain is bounded.
155 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
156 bounded
= bool(libisl
.isl_set_is_bounded(islset
))
157 libisl
.isl_set_free(islset
)
160 def __eq__(self
, other
):
162 Return True if two domains are equal.
164 if isinstance(other
, Domain
):
165 symbols
= self
._xsymbols
([self
, other
])
166 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
167 islset2
= other
._toislset
(other
.polyhedra
, symbols
)
168 equal
= bool(libisl
.isl_set_is_equal(islset1
, islset2
))
169 libisl
.isl_set_free(islset1
)
170 libisl
.isl_set_free(islset2
)
172 return NotImplemented
174 def isdisjoint(self
, other
):
176 Return True if two domains have a null intersection.
178 if not isinstance(other
, Domain
):
179 raise TypeError('other must be a Domain instance')
180 symbols
= self
._xsymbols
([self
, other
])
181 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
182 islset2
= self
._toislset
(other
.polyhedra
, symbols
)
183 equal
= bool(libisl
.isl_set_is_disjoint(islset1
, islset2
))
184 libisl
.isl_set_free(islset1
)
185 libisl
.isl_set_free(islset2
)
188 def issubset(self
, other
):
190 Report whether another domain contains the domain.
194 def __le__(self
, other
):
195 if isinstance(other
, Domain
):
196 symbols
= self
._xsymbols
([self
, other
])
197 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
198 islset2
= self
._toislset
(other
.polyhedra
, symbols
)
199 equal
= bool(libisl
.isl_set_is_subset(islset1
, islset2
))
200 libisl
.isl_set_free(islset1
)
201 libisl
.isl_set_free(islset2
)
203 return NotImplemented
204 __le__
.__doc
__ = issubset
.__doc
__
206 def __lt__(self
, other
):
208 Report whether another domain is contained within the domain.
210 if isinstance(other
, Domain
):
211 symbols
= self
._xsymbols
([self
, other
])
212 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
213 islset2
= self
._toislset
(other
.polyhedra
, symbols
)
214 equal
= bool(libisl
.isl_set_is_strict_subset(islset1
, islset2
))
215 libisl
.isl_set_free(islset1
)
216 libisl
.isl_set_free(islset2
)
218 return NotImplemented
220 def complement(self
):
222 Return the complementary domain of the domain.
224 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
225 islset
= libisl
.isl_set_complement(islset
)
226 return self
._fromislset
(islset
, self
.symbols
)
228 def __invert__(self
):
229 return self
.complement()
230 __invert__
.__doc
__ = complement
.__doc
__
232 def make_disjoint(self
):
234 Return an equivalent domain, whose polyhedra are disjoint.
236 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
237 islset
= libisl
.isl_set_make_disjoint(mainctx
, islset
)
238 return self
._fromislset
(islset
, self
.symbols
)
242 Simplify the representation of the domain by trying to combine pairs of
243 polyhedra into a single polyhedron, and return the resulting domain.
245 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
246 islset
= libisl
.isl_set_coalesce(islset
)
247 return self
._fromislset
(islset
, self
.symbols
)
249 def detect_equalities(self
):
251 Simplify the representation of the domain by detecting implicit
252 equalities, and return the resulting domain.
254 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
255 islset
= libisl
.isl_set_detect_equalities(islset
)
256 return self
._fromislset
(islset
, self
.symbols
)
258 def remove_redundancies(self
):
260 Remove redundant constraints in the domain, and return the resulting
263 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
264 islset
= libisl
.isl_set_remove_redundancies(islset
)
265 return self
._fromislset
(islset
, self
.symbols
)
267 def aspolyhedron(self
):
268 from .polyhedra
import Polyhedron
269 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
270 islbset
= libisl
.isl_set_polyhedral_hull(islset
)
271 return Polyhedron
._fromislbasicset
(islbset
, self
.symbols
)
276 def project(self
, symbols
):
278 Project out the sequence of symbols given in arguments, and return the
281 symbols
= list(symbols
)
282 for symbol
in symbols
:
283 if not isinstance(symbol
, Symbol
):
284 raise TypeError('symbols must be Symbol instances')
285 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
287 for index
, symbol
in reversed(list(enumerate(self
.symbols
))):
288 if symbol
in symbols
:
291 islset
= libisl
.isl_set_project_out(islset
,
292 libisl
.isl_dim_set
, index
+ 1, n
)
295 islset
= libisl
.isl_set_project_out(islset
, libisl
.isl_dim_set
, 0, n
)
296 symbols
= [symbol
for symbol
in self
.symbols
if symbol
not in symbols
]
297 return Domain
._fromislset
(islset
, symbols
)
301 Return a sample of the domain, as an integer instance of Point. If the
302 domain is empty, a ValueError exception is raised.
304 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
305 islpoint
= libisl
.isl_set_sample_point(islset
)
306 if bool(libisl
.isl_point_is_void(islpoint
)):
307 libisl
.isl_point_free(islpoint
)
308 raise ValueError('domain must be non-empty')
310 for index
, symbol
in enumerate(self
.symbols
):
311 coordinate
= libisl
.isl_point_get_coordinate_val(islpoint
,
312 libisl
.isl_dim_set
, index
)
313 coordinate
= islhelper
.isl_val_to_int(coordinate
)
314 point
[symbol
] = coordinate
315 libisl
.isl_point_free(islpoint
)
318 def intersection(self
, *others
):
320 Return the intersection of two or more domains as a new domain. As an
321 alternative, function And() can be used.
328 def __and__(self
, other
):
329 if isinstance(other
, Domain
):
330 symbols
= self
._xsymbols
([self
, other
])
331 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
332 islset2
= other
._toislset
(other
.polyhedra
, symbols
)
333 islset
= libisl
.isl_set_intersect(islset1
, islset2
)
334 return self
._fromislset
(islset
, symbols
)
335 return NotImplemented
336 __and__
.__doc
__ = intersection
.__doc
__
338 def union(self
, *others
):
340 Return the union of two or more domains as a new domain. As an
341 alternative, function Or() can be used.
348 def __or__(self
, other
):
349 if isinstance(other
, Domain
):
350 symbols
= self
._xsymbols
([self
, other
])
351 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
352 islset2
= other
._toislset
(other
.polyhedra
, symbols
)
353 islset
= libisl
.isl_set_union(islset1
, islset2
)
354 return self
._fromislset
(islset
, symbols
)
355 return NotImplemented
356 __or__
.__doc
__ = union
.__doc
__
358 def __add__(self
, other
):
360 __add__
.__doc
__ = union
.__doc
__
362 def difference(self
, other
):
364 Return the difference of two domains as a new domain.
368 def __sub__(self
, other
):
369 if isinstance(other
, Domain
):
370 symbols
= self
._xsymbols
([self
, other
])
371 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
372 islset2
= other
._toislset
(other
.polyhedra
, symbols
)
373 islset
= libisl
.isl_set_subtract(islset1
, islset2
)
374 return self
._fromislset
(islset
, symbols
)
375 return NotImplemented
376 __sub__
.__doc
__ = difference
.__doc
__
380 Return the lexicographic minimum of the elements in the domain.
382 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
383 islset
= libisl
.isl_set_lexmin(islset
)
384 return self
._fromislset
(islset
, self
.symbols
)
388 Return the lexicographic maximum of the elements in the domain.
390 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
391 islset
= libisl
.isl_set_lexmax(islset
)
392 return self
._fromislset
(islset
, self
.symbols
)
394 if islhelper
.isl_version
>= '0.13':
395 _RE_COORDINATE
= re
.compile(r
'\((?P<num>\-?\d+)\)(/(?P<den>\d+))?')
397 _RE_COORDINATE
= None
401 Return the vertices of the domain, as a list of rational instances of
404 from .polyhedra
import Polyhedron
405 if not self
.isbounded():
406 raise ValueError('domain must be bounded')
407 islbset
= self
._toislbasicset
(self
.equalities
, self
.inequalities
,
409 vertices
= libisl
.isl_basic_set_compute_vertices(islbset
);
410 vertices
= islhelper
.isl_vertices_vertices(vertices
)
412 for vertex
in vertices
:
413 expr
= libisl
.isl_vertex_get_expr(vertex
)
415 if self
._RE
_COORDINATE
is None:
416 constraints
= islhelper
.isl_basic_set_constraints(expr
)
417 for constraint
in constraints
:
418 constant
= libisl
.isl_constraint_get_constant_val(constraint
)
419 constant
= islhelper
.isl_val_to_int(constant
)
420 for index
, symbol
in enumerate(self
.symbols
):
421 coefficient
= libisl
.isl_constraint_get_coefficient_val(constraint
,
422 libisl
.isl_dim_set
, index
)
423 coefficient
= islhelper
.isl_val_to_int(coefficient
)
425 coordinate
= -Fraction(constant
, coefficient
)
426 coordinates
.append((symbol
, coordinate
))
428 string
= islhelper
.isl_multi_aff_to_str(expr
)
429 matches
= self
._RE
_COORDINATE
.finditer(string
)
430 for symbol
, match
in zip(self
.symbols
, matches
):
431 numerator
= int(match
.group('num'))
432 denominator
= match
.group('den')
433 denominator
= 1 if denominator
is None else int(denominator
)
434 coordinate
= Fraction(numerator
, denominator
)
435 coordinates
.append((symbol
, coordinate
))
436 points
.append(Point(coordinates
))
441 Return the integer points of a bounded domain, as a list of integer
442 instances of Point. If the domain is not bounded, a ValueError exception
445 if not self
.isbounded():
446 raise ValueError('domain must be bounded')
447 from .polyhedra
import Universe
, Eq
448 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
449 islpoints
= islhelper
.isl_set_points(islset
)
451 for islpoint
in islpoints
:
453 for index
, symbol
in enumerate(self
.symbols
):
454 coordinate
= libisl
.isl_point_get_coordinate_val(islpoint
,
455 libisl
.isl_dim_set
, index
)
456 coordinate
= islhelper
.isl_val_to_int(coordinate
)
457 coordinates
[symbol
] = coordinate
458 points
.append(Point(coordinates
))
461 def __contains__(self
, point
):
463 Return True if the point if contained within the domain.
465 for polyhedron
in self
.polyhedra
:
466 if point
in polyhedron
:
471 def _polygon_inner_point(cls
, points
):
472 symbols
= points
[0].symbols
473 coordinates
= {symbol
: 0 for symbol
in symbols
}
475 for symbol
, coordinate
in point
.coordinates():
476 coordinates
[symbol
] += coordinate
477 for symbol
in symbols
:
478 coordinates
[symbol
] /= len(points
)
479 return Point(coordinates
)
482 def _sort_polygon_2d(cls
, points
):
485 o
= cls
._polygon
_inner
_point
(points
)
489 dx
, dy
= (coordinate
for symbol
, coordinate
in om
.coordinates())
490 angle
= math
.atan2(dy
, dx
)
492 return sorted(points
, key
=angles
.get
)
495 def _sort_polygon_3d(cls
, points
):
498 o
= cls
._polygon
_inner
_point
(points
)
509 raise ValueError('degenerate polygon')
513 normprod
= norm_oa
* om
.norm()
514 cosinus
= max(oa
.dot(om
) / normprod
, -1.)
515 sinus
= u
.dot(oa
.cross(om
)) / normprod
516 angle
= math
.acos(cosinus
)
517 angle
= math
.copysign(angle
, sinus
)
519 return sorted(points
, key
=angles
.get
)
523 Return the list of faces of a bounded domain. Each face is represented
524 by a list of vertices, in the form of rational instances of Point. If
525 the domain is not bounded, a ValueError exception is raised.
528 for polyhedron
in self
.polyhedra
:
529 vertices
= polyhedron
.vertices()
530 for constraint
in polyhedron
.constraints
:
532 for vertex
in vertices
:
533 if constraint
.subs(vertex
.coordinates()) == 0:
539 def _plot_2d(self
, plot
=None, **kwargs
):
540 import matplotlib
.pyplot
as plt
541 from matplotlib
.patches
import Polygon
544 plot
= fig
.add_subplot(1, 1, 1)
545 xmin
, xmax
= plot
.get_xlim()
546 ymin
, ymax
= plot
.get_ylim()
547 for polyhedron
in self
.polyhedra
:
548 vertices
= polyhedron
._sort
_polygon
_2d
(polyhedron
.vertices())
549 xys
= [tuple(vertex
.values()) for vertex
in vertices
]
551 xmin
, xmax
= min(xmin
, float(min(xs
))), max(xmax
, float(max(xs
)))
552 ymin
, ymax
= min(ymin
, float(min(ys
))), max(ymax
, float(max(ys
)))
553 plot
.add_patch(Polygon(xys
, closed
=True, **kwargs
))
554 plot
.set_xlim(xmin
, xmax
)
555 plot
.set_ylim(ymin
, ymax
)
558 def _plot_3d(self
, plot
=None, **kwargs
):
559 import matplotlib
.pyplot
as plt
560 from mpl_toolkits
.mplot3d
import Axes3D
561 from mpl_toolkits
.mplot3d
.art3d
import Poly3DCollection
567 xmin
, xmax
= axes
.get_xlim()
568 ymin
, ymax
= axes
.get_ylim()
569 zmin
, zmax
= axes
.get_zlim()
571 for vertices
in self
.faces():
572 vertices
= self
._sort
_polygon
_3d
(vertices
)
573 vertices
.append(vertices
[0])
574 face_xyzs
= [tuple(vertex
.values()) for vertex
in vertices
]
575 xs
, ys
, zs
= zip(*face_xyzs
)
576 xmin
, xmax
= min(xmin
, float(min(xs
))), max(xmax
, float(max(xs
)))
577 ymin
, ymax
= min(ymin
, float(min(ys
))), max(ymax
, float(max(ys
)))
578 zmin
, zmax
= min(zmin
, float(min(zs
))), max(zmax
, float(max(zs
)))
579 poly_xyzs
.append(face_xyzs
)
580 collection
= Poly3DCollection(poly_xyzs
, **kwargs
)
581 axes
.add_collection3d(collection
)
582 axes
.set_xlim(xmin
, xmax
)
583 axes
.set_ylim(ymin
, ymax
)
584 axes
.set_zlim(zmin
, zmax
)
587 def plot(self
, plot
=None, **kwargs
):
589 Plot a 2D or 3D domain using matplotlib. Draw it to the current plot
590 object if present, otherwise create a new one. options are keyword
591 arguments passed to the matplotlib drawing functions, they can be used
592 to set the drawing color for example. Raise ValueError is the domain is
595 if not self
.isbounded():
596 raise ValueError('domain must be bounded')
597 elif self
.dimension
== 2:
598 return self
._plot
_2d
(plot
=plot
, **kwargs
)
599 elif self
.dimension
== 3:
600 return self
._plot
_3d
(plot
=plot
, **kwargs
)
602 raise ValueError('polyhedron must be 2 or 3-dimensional')
604 def subs(self
, symbol
, expression
=None):
606 Substitute the given symbol by an expression in the domain constraints.
607 To perform multiple substitutions at once, pass a sequence or a
608 dictionary of (old, new) pairs to subs. The syntax of this function is
609 similar to LinExpr.subs().
611 polyhedra
= [polyhedron
.subs(symbol
, expression
)
612 for polyhedron
in self
.polyhedra
]
613 return Domain(*polyhedra
)
616 def _fromislset(cls
, islset
, symbols
):
617 from .polyhedra
import Polyhedron
618 islset
= libisl
.isl_set_remove_divs(islset
)
619 islbsets
= islhelper
.isl_set_basic_sets(islset
)
620 libisl
.isl_set_free(islset
)
622 for islbset
in islbsets
:
623 polyhedron
= Polyhedron
._fromislbasicset
(islbset
, symbols
)
624 polyhedra
.append(polyhedron
)
625 if len(polyhedra
) == 0:
626 from .polyhedra
import Empty
628 elif len(polyhedra
) == 1:
631 self
= object().__new
__(Domain
)
632 self
._polyhedra
= tuple(polyhedra
)
633 self
._symbols
= cls
._xsymbols
(polyhedra
)
634 self
._dimension
= len(self
._symbols
)
638 def _toislset(cls
, polyhedra
, symbols
):
639 polyhedron
= polyhedra
[0]
640 islbset
= polyhedron
._toislbasicset
(polyhedron
.equalities
,
641 polyhedron
.inequalities
, symbols
)
642 islset1
= libisl
.isl_set_from_basic_set(islbset
)
643 for polyhedron
in polyhedra
[1:]:
644 islbset
= polyhedron
._toislbasicset
(polyhedron
.equalities
,
645 polyhedron
.inequalities
, symbols
)
646 islset2
= libisl
.isl_set_from_basic_set(islbset
)
647 islset1
= libisl
.isl_set_union(islset1
, islset2
)
651 def _fromast(cls
, node
):
652 from .polyhedra
import Polyhedron
653 if isinstance(node
, ast
.Module
) and len(node
.body
) == 1:
654 return cls
._fromast
(node
.body
[0])
655 elif isinstance(node
, ast
.Expr
):
656 return cls
._fromast
(node
.value
)
657 elif isinstance(node
, ast
.UnaryOp
):
658 domain
= cls
._fromast
(node
.operand
)
659 if isinstance(node
.operand
, ast
.invert
):
661 elif isinstance(node
, ast
.BinOp
):
662 domain1
= cls
._fromast
(node
.left
)
663 domain2
= cls
._fromast
(node
.right
)
664 if isinstance(node
.op
, ast
.BitAnd
):
665 return And(domain1
, domain2
)
666 elif isinstance(node
.op
, ast
.BitOr
):
667 return Or(domain1
, domain2
)
668 elif isinstance(node
, ast
.Compare
):
671 left
= LinExpr
._fromast
(node
.left
)
672 for i
in range(len(node
.ops
)):
674 right
= LinExpr
._fromast
(node
.comparators
[i
])
675 if isinstance(op
, ast
.Lt
):
676 inequalities
.append(right
- left
- 1)
677 elif isinstance(op
, ast
.LtE
):
678 inequalities
.append(right
- left
)
679 elif isinstance(op
, ast
.Eq
):
680 equalities
.append(left
- right
)
681 elif isinstance(op
, ast
.GtE
):
682 inequalities
.append(left
- right
)
683 elif isinstance(op
, ast
.Gt
):
684 inequalities
.append(left
- right
- 1)
689 return Polyhedron(equalities
, inequalities
)
690 raise SyntaxError('invalid syntax')
692 _RE_BRACES
= re
.compile(r
'^\{\s*|\s*\}$')
693 _RE_EQ
= re
.compile(r
'([^<=>])=([^<=>])')
694 _RE_AND
= re
.compile(r
'\band\b|,|&&|/\\|∧|∩')
695 _RE_OR
= re
.compile(r
'\bor\b|;|\|\||\\/|∨|∪')
696 _RE_NOT
= re
.compile(r
'\bnot\b|!|¬')
697 _RE_NUM_VAR
= LinExpr
._RE
_NUM
_VAR
698 _RE_OPERATORS
= re
.compile(r
'(&|\||~)')
701 def fromstring(cls
, string
):
703 Create a domain from a string. Raise SyntaxError if the string is not
706 # remove curly brackets
707 string
= cls
._RE
_BRACES
.sub(r
'', string
)
708 # replace '=' by '=='
709 string
= cls
._RE
_EQ
.sub(r
'\1==\2', string
)
710 # replace 'and', 'or', 'not'
711 string
= cls
._RE
_AND
.sub(r
' & ', string
)
712 string
= cls
._RE
_OR
.sub(r
' | ', string
)
713 string
= cls
._RE
_NOT
.sub(r
' ~', string
)
714 # add implicit multiplication operators, e.g. '5x' -> '5*x'
715 string
= cls
._RE
_NUM
_VAR
.sub(r
'\1*\2', string
)
716 # add parentheses to force precedence
717 tokens
= cls
._RE
_OPERATORS
.split(string
)
718 for i
, token
in enumerate(tokens
):
720 token
= '({})'.format(token
)
722 string
= ''.join(tokens
)
723 tree
= ast
.parse(string
, 'eval')
724 return cls
._fromast
(tree
)
727 assert len(self
.polyhedra
) >= 2
728 strings
= [repr(polyhedron
) for polyhedron
in self
.polyhedra
]
729 return 'Or({})'.format(', '.join(strings
))
731 def _repr_latex_(self
):
733 for polyhedron
in self
.polyhedra
:
734 strings
.append('({})'.format(polyhedron
._repr
_latex
_().strip('$')))
735 return '${}$'.format(' \\vee '.join(strings
))
738 def fromsympy(cls
, expr
):
740 Create a domain from a sympy expression.
743 from .polyhedra
import Lt
, Le
, Eq
, Ne
, Ge
, Gt
745 sympy
.And
: And
, sympy
.Or
: Or
, sympy
.Not
: Not
,
746 sympy
.Lt
: Lt
, sympy
.Le
: Le
,
747 sympy
.Eq
: Eq
, sympy
.Ne
: Ne
,
748 sympy
.Ge
: Ge
, sympy
.Gt
: Gt
,
750 if expr
.func
in funcmap
:
751 args
= [Domain
.fromsympy(arg
) for arg
in expr
.args
]
752 return funcmap
[expr
.func
](*args
)
753 elif isinstance(expr
, sympy
.Expr
):
754 return LinExpr
.fromsympy(expr
)
755 raise ValueError('non-domain expression: {!r}'.format(expr
))
759 Convert the domain to a sympy expression.
762 polyhedra
= [polyhedron
.tosympy() for polyhedron
in polyhedra
]
763 return sympy
.Or(*polyhedra
)
768 Create the intersection domain of the domains given in arguments.
770 if len(domains
) == 0:
771 from .polyhedra
import Universe
774 return domains
[0].intersection(*domains
[1:])
775 And
.__doc
__ = Domain
.intersection
.__doc
__
779 Create the union domain of the domains given in arguments.
781 if len(domains
) == 0:
782 from .polyhedra
import Empty
785 return domains
[0].union(*domains
[1:])
786 Or
.__doc
__ = Domain
.union
.__doc
__
790 Create the complementary domain of the domain given in argument.
793 Not
.__doc
__ = Domain
.complement
.__doc
__