#
# The Caml sources (including camlyacc and camllex source files)
-SOURCES = types.ml parser.mly lexer.mll value.ml signal.ml faustexp.ml interpreter.ml preprocess.ml main.ml preprocess_stubs.cpp
+SOURCES = types.ml parser.mly lexer.mll basic.ml value.ml signal.ml beam.ml faustexp.ml interpreter.ml preprocess.ml main.ml preprocess_stubs.cpp
# The executable file to generate
-EXEC = faustine
+EXEC = mrfausti
# Path to ocaml include header files
export OCAML_INCLUDE_PATH
#SNDFILE_PATH = /home/wang/Desktop/libsndfile-ocaml
export SNDFILE_PATH
-# Path to Faust.mr3
+# Path to Faust.mr2
FAUST_PATH = faust-0.9.47mr3
# Path to preprocessor library
open Types;;
open Value;;
-(* EXCEPTIONS *)
-(** Exception raised in beam matching of faust expressions.*)
-exception Beam_Matching_Error of string;;
-
-(** Exception raised in case that the branch under call hasn't yet been programed.*)
exception NotYetDone;;
+
+class virtual expression : expression_type =
+ fun (exp_init : faust_exp) ->
+ object
+ val exp = exp_init
+ val dim = new dimension
+ val delay = 0
+ method get_exp = exp
+ method get_dim = dim
+ method get_delay = delay
+ method to_string = "NotYetDone"
+ method virtual evaluate : beam_type -> beam_type
+end;;
+
+
+class exp_const =
+ object
+ inherit expression
+ method evaluate = fun b1 ->
+
+ end;;
+
+
+class exp_ident =
+ object
+ inherit expression
+
+ end;;
+
+
+class exp_par =
+ object
+ inherit expression
+
+ end;;
+
+
+class exp_split =
+ object
+ inherit expression
+
+ end;;
+
+
+class exp_merge =
+ object
+ inherit expression
+
+ end;;
+
+class exp_seq =
+ object
+ inherit expression
+
+ end;;
+
+class exp_rec =
+ object
+ inherit expression
+
+ end;;
+
+
+
+
+
+
(* PROCESS DELAY ESTIMATION *)
(** val delay : faust_exp -> int, returns the number of delays estimated staticly.
|Floor -> 0
|Int -> 0
|Sin -> 0
- |Cos -> 0
- |Atan -> 0
- |Atantwo -> 0
- |Sqrt -> 0
|Rdtable -> 100000 (* danger! *)
|Mod -> 0
|Larger -> 0
|Floor -> End (1, 1)
|Int -> End (1, 1)
|Sin -> End (1, 1)
- |Cos -> End (1, 1)
- |Atan -> End (1, 1)
- |Atantwo -> End (2, 1)
- |Sqrt -> End (1, 1)
|Rdtable -> End (3, 1)
|Mod -> End (2, 1)
|Vectorize -> End (2, 1)
-{open Parser}
+{
+open Parser
+open Types
+}
rule token = parse
- [' ' '\t' '\n' ] { token lexbuf }
-| ['a'-'z' 'A'-'Z']+ as x { IDENT x }
-| ['+' '*' '-' '/' '!' '_' '#'
- '@' '<' '>' '%'] as x { IDENT (String.make 1 x) }
-| "[]" { IDENT "[]" }
-| ['0'-'9']+ as a { CONST a }
-| '.' { POINT }
-| '(' { LPAR }
-| ')' { RPAR }
-| ',' { PAR }
-| ':' { SEQ }
-| "<:" { SPLIT }
-| ":>" { MERGE }
-| "~" { REC }
-| eof { EOF }
+ [' ' '\t' '\n' ] { token lexbuf }
+
+| "+" { IDENT Add}
+| "-" { IDENT Sup}
+| "*" { IDENT Mul}
+| "/" { IDENT Div}
+| "_" { IDENT Pass}
+| "!" { IDENT Stop}
+| "mem" { IDENT Mem}
+| "@" { IDENT Delay}
+| "floor" { IDENT Floor}
+| "int" { IDENT Int}
+| "sin" { IDENT Sin}
+| "cos" { IDENT Cos}
+| "atan" { IDENT Atan}
+| "atantwo" { IDENT Atantwo}
+| "sqrt" { IDENT Sqrt}
+| "rdtable" { IDENT Rdtable}
+| "%" { IDENT Mod}
+| "vectorize" { IDENT Vectorize}
+| "#" { IDENT Vconcat}
+| "[]" { IDENT Vpick }
+| "serialize" { IDENT Serialize}
+| ">" { IDENT Larger}
+| "<" { IDENT Smaller}
+| "prefix" { IDENT Prefix}
+| "selecttwo" { IDENT Selecttwo}
+| "selectthree" { IDENT Selectthree}
+
+
+| ['0'-'9']+ as a { CONST a }
+| '.' { POINT }
+
+
+| '(' { LPAR }
+| ')' { RPAR }
+| ',' { PAR }
+| ':' { SEQ }
+| "<:" { SPLIT }
+| ":>" { MERGE }
+| "~" { REC }
+| eof { EOF }
(**
Module: Signal
- Description: type signal = rate * (int -> value), operations of signals.
+ Description: signal definition and operations.
@author WANG Haisheng
Created: 03/06/2013 Modified: 03/06/2013
*)
open Types;;
+open Basic;;
open Value;;
-(* EXCEPTIONS *)
-
-(** Exception raised in operations of signals.*)
exception Signal_operation of string;;
-
-
-(* MACRO *)
-
-(** Macro constants of the file.*)
-type signal_macro = Delay_Memory_Length_int;;
-
-
-(** val signal_macro_to_int : signal_macro -> int.*)
-let signal_macro_to_int m = match m with
- |Delay_Memory_Length_int -> 10000;;
-
-
-(* SIGNAL OPERATIONS *)
-
-(** val frequency : signal -> int, returns the frequency of a signal.*)
-let frequency s = fst s;;
-
-
-(** val signal_fun : signal -> (int -> value), returns the functional part of a signal.*)
-let signal_fun s = snd s;;
-
-
-(** val check_frequency : int -> int -> int, returns the correction of frequency.*)
-let check_frequency = fun f1 -> fun f2 ->
- if f1 = f2 || f2 = 0 then f1
- else if f1 = 0 then f2
- else raise (Signal_operation "frequency not matched.");;
-
-(** val signal_check_frequency : signal -> signal -> int,
-checks the frequencies of two input signals, and returns common frequency or raise an exception.*)
-let signal_check_frequency = fun s1 -> fun s2 ->
- let f1 = frequency s1 in
- let f2 = frequency s2 in
- check_frequency f1 f2;;
-
-
-(** val signal_check_frequency3 : signal -> signal -> signal -> int,
-checks the frequencies of three input signal, and returns common frequency or raise an exception.*)
-let signal_check_frequency3 = fun s1 -> fun s2 -> fun s3 ->
- let f1 = signal_check_frequency s1 s2 in
- let f2 = signal_check_frequency s1 s3 in
- check_frequency f1 f2;;
-
-
-(** val signal_check_frequency4 : signal -> signal -> signal -> signal -> int,
-checks the frequencies of three input signal, and returns common frequency or raise an exception.*)
-let signal_check_frequency4 = fun s1 -> fun s2 -> fun s3 -> fun s4 ->
- let f1 = signal_check_frequency s1 s2 in
- let f2 = signal_check_frequency s3 s4 in
- check_frequency f1 f2;;
-
-
-(** val signal_add_one_memory : signal -> signal,
-returns the signal with memory of one latest sample.*)
-let signal_add_one_memory = fun s ->
- let new_signal = factory_add_memory (signal_fun s) 1 in
- (frequency s, new_signal);;
-
-
-(** val beam_add_one_memory : signal list -> signal list,
-adds memory of one latest sample for each element in signal list.*)
-let beam_add_one_memory = fun beam ->
- List.map signal_add_one_memory beam;;
-
-
-(** val signal_add : signal -> signal -> signal, output(t) = input1(t) + input2(t),
- frequency consistent.*)
-let signal_add s1 s2 =
- let f = signal_check_frequency s1 s2 in
- let new_signal = fun t -> ((signal_fun s1) t) +~ ((signal_fun s2) t) in
- (f, new_signal);;
-
-
-(** val signal_neg : signal -> signal, output(t) = -input(t), frequency consistent.*)
-let signal_neg s =
- let new_signal = fun t -> v_neg ((signal_fun s) t) in
- (frequency s, new_signal);;
-
-
-(** val signal_sub : signal -> signal -> signal, output(t) = input1(t) - input2(t),
- frequency consistent.*)
-let signal_sub s1 s2 = signal_add s1 (signal_neg s2);;
-
-
-(** val signal_mul : signal -> signal -> signal, output(t) = input1(t) * input2(t),
- frequency consistent.*)
-let signal_mul s1 s2 =
- let f = signal_check_frequency s1 s2 in
- let new_signal = fun t -> ((signal_fun s1) t) *~ ((signal_fun s2) t) in
- (f, new_signal);;
-
-
-(** val signal_div : signal -> signal -> signal, output(t) = input1(t) / input2(t),
- frequency consistent.*)
-let signal_div s1 s2 =
- let f = signal_check_frequency s1 s2 in
- let new_signal = fun t -> ((signal_fun s1) t) /~ ((signal_fun s2) t) in
- (f, new_signal);;
-
-
-(** val signal_delay : signal -> signal -> signal, output(t) = input1(t - input2(t)),
- Attention: delay dynamic, frequency of output signal equals to that of first input signal.*)
-let signal_delay s1 s2 =
- let s1_mem = factory_add_memory (signal_fun s1)
- (signal_macro_to_int Delay_Memory_Length_int) in
- let new_signal = fun t ->
- let delay = (signal_fun s2) t in
- match delay with
- |N i -> if i < 0 then raise (Signal_operation "Delay time < 0.")
- else if (t - i) >= 0 then s1_mem (t - i)
- else v_zero (s1_mem 0)
- |R f -> let i = int_of_float f in
- if i < 0 then raise (Signal_operation "Delay time < 0.")
- else if (t - i) >= 0 then s1_mem (t - i)
- else v_zero (s1_mem 0)
- |Vec (size, vec) -> raise (Signal_operation "Delay time can not be a vector.")
- |Zero -> s1_mem t
- |W -> raise (Signal_operation "Delay time error.")
- in
- (frequency s1, new_signal);;
-
-
-(** val signal_mem : signal -> signal, equivalent to signal_delay with constant delay 1.*)
-let signal_mem s = signal_delay s (1, (fun t -> N 1));;
-
-
-(** val signal_vectorize : signal -> signal -> signal, output(t)(i) = input1(input2(0) * t + i),
-Attention: vector size n static, frequency of output signal is (1/n * frequency of input1)*)
-let signal_vectorize s1 s2 =
- let size = (signal_fun s2) 0 in
- match size with
- |N size_int ->
- (
- let new_signal = fun t ->
- make_vector size_int (fun i -> (signal_fun s1) (size_int * t + i)) in
- let new_frequency = (frequency s1) / size_int in
- (new_frequency, new_signal)
- )
- |_ -> raise (Signal_operation "Vectorize: vector size should be int.");;
-
-
-(** val signal_serialize : signal -> signal, output(t) = input(floor(t/n))(t%n),
- with n = size of input(0).
- Attention: input size unknown in the cas of "rec".*)
-let signal_serialize s =
- let temp0 = (signal_fun s) 0 in
- match temp0 with
- |Vec (size0, vec0) ->
- let new_signal = fun t ->
- (
- let temp = (signal_fun s) (t/size0) in
- match temp with
- |Vec (size, vec) ->
- if size = size0 then
- vec (t mod size)
- else
- raise (Signal_operation "Serialize: vector length not consistent.")
- |_ -> raise (Signal_operation "Serialize: signal type not consistent.")
- )
- in
- let new_frequency = (frequency s) * size0 in
- (new_frequency, new_signal)
- |_ -> raise (Signal_operation "Serialize: input signal should be vector.");;
-
-
-(** val signal_append : signal -> signal -> signal, symbol "#",
- appends vectors of the two input signals at each time, frequency consistent.*)
-let signal_append s1 s2 =
- let f = signal_check_frequency s1 s2 in
- let new_signal = fun t ->
- let temp1 = (signal_fun s1) t in
- let temp2 = (signal_fun s2) t in
- match (temp1, temp2) with
- |(Vec (size1, vec1), Vec (size2, vec2)) ->
- let new_vec = fun i -> if i < size1 then vec1 i else vec2 (i - size1) in
- make_vector (size1 + size2) new_vec
- |_ -> raise (Signal_operation "Append: input signals should be vectors.")
- in
- (f, new_signal);;
-
-
-(** val signal_nth : signal -> signal -> signal, symbol "[]", output(t) = input1(t)(input2(t)),
- frequency consistent. Attention: selection index dynamic.*)
-let signal_nth s1 s2 =
- let f = signal_check_frequency s1 s2 in
- let new_signal = fun t ->
- let temp1 = (signal_fun s1) t in
- let temp2 = (signal_fun s2) t in
- match temp1 with
- |Vec (size1, vec1) ->
- (
- match temp2 with
- |N i -> vec1 i
- |R f ->
- raise (Signal_operation "Get: second input signal should be int.")
- |Vec (size2, vec2) ->
- raise (Signal_operation "Get: second input signal should be int.")
- |Zero -> vec1 0
- |W ->
- raise (Signal_operation "Get: second input signal should be int.")
- )
- |_ -> raise (Signal_operation "Get: first input signal should be vector.")
- in
- (f, new_signal);;
-
-
-(** val signal_floor : signal -> signal, output(t) = v_floor(input(t)), frequency consistent.*)
-let signal_floor s =
- let new_signal = fun t -> v_floor ((signal_fun s) t) in
- (frequency s, new_signal);;
-
-
-(** val signal_int : signal -> signal, output(t) = v_int(input(t)), frequency consistent.*)
-let signal_int s =
- let new_signal = fun t -> v_int ((signal_fun s) t) in
- (frequency s, new_signal);;
-
-
-(** val signal_sin : signal -> signal, output(t) = v_sin(input(t)), frequency consistent.*)
-let signal_sin s =
- let new_signal = fun t -> v_sin ((signal_fun s) t) in
- (frequency s, new_signal);;
-
-
-(** val signal_cos : signal -> signal, output(t) = v_cos(input(t)), frequency consistent.*)
-let signal_cos s =
- let new_signal = fun t -> v_cos ((signal_fun s) t) in
- (frequency s, new_signal);;
-
-
-(** val signal_atan : signal -> signal, output(t) = v_atan(input(t)), frequency consistent.*)
-let signal_atan s =
- let new_signal = fun t -> v_atan ((signal_fun s) t) in
- (frequency s, new_signal);;
-
-
-let signal_atantwo s1 s2 =
- let new_signal = fun t -> v_atantwo ((signal_fun s1) t) ((signal_fun s2) t) in
- (frequency s1, new_signal);;
-
-
-(** val signal_sqrt : signal -> signal, output(t) = v_sqrt(input(t)), frequency consistent.*)
-let signal_sqrt s =
- let new_signal = fun t -> v_sqrt ((signal_fun s) t) in
- (frequency s, new_signal);;
-
-
-(** val signal_rdtable : signal -> signal -> signal,
- output(t) = input1(input2(t)), frequency equals to that of input2.
- Attention: no memory implemented, very expensive when input1 comes from rec or delays.*)
-let signal_rdtable s0 s1 s2 =
- let memory_length_int = take_off_N ((signal_fun s0) 0) in
- let s1_mem = factory_add_memory (signal_fun s1) memory_length_int in
- let new_signal = fun t ->
- let index = (signal_fun s2) t in
- match index with
- |N i -> s1_mem i
- |R f -> raise (Signal_operation "Rdtable index cannot be float.")
- |Vec (size, vec) -> raise (Signal_operation "Rdtable index cannot be vector.")
- |Zero -> s1_mem 0
- |W -> raise (Signal_operation "Rdtable index cannot be Error.")
- in
- (frequency s2, new_signal);;
-
-
-(** val signal_mod : signal -> signal -> signal,
- output(t) = input1(t) % input2(t), frequency consistent.*)
-let signal_mod s1 s2 =
- let f = signal_check_frequency s1 s2 in
- let new_signal = fun t -> v_mod ((signal_fun s1) t) ((signal_fun s2) t) in
- (f, new_signal);;
-
-
-(** val signal_sup : signal -> signal -> signal,
- output(t) = input1(t) > input2(t), frequency consistent.*)
-let signal_sup s1 s2 =
- let f = signal_check_frequency s1 s2 in
- let new_signal = fun t -> v_sup ((signal_fun s1) t) ((signal_fun s2) t) in
- (f, new_signal);;
-
-
-(** val signal_inf : signal -> signal -> signal,
- output(t) = input1(t) < input2(t), frequency consistent.*)
-let signal_inf s1 s2 =
- let f = signal_check_frequency s1 s2 in
- let new_signal = fun t -> v_inf ((signal_fun s1) t) ((signal_fun s2) t) in
- (f, new_signal);;
-
-
-(** val signal_select2 : signal -> signal -> signal -> signal,
-[signal_select2 si s0 s1] selects s0 or s1 by index si, frequency consistent.*)
-let signal_select2 si s0 s1 =
- let f = signal_check_frequency3 si s0 s1 in
- let new_signal = fun t ->
- if (signal_fun si) t = N 0 then (signal_fun s0) t
- else if (signal_fun si) t = N 1 then (signal_fun s1) t
- else raise (Signal_operation "select2 index should be 0 or 1.")
- in
- (f, new_signal);;
-
-
-(** val signal_select3 : signal -> signal -> signal -> signal -> signal,
-[signal_select3 si s0 s1 s2] selects s0 or s1 or s2 by index si, frequency consistent.*)
-let signal_select3 si s0 s1 s2 =
- let f = signal_check_frequency4 si s0 s1 s2 in
- let new_signal = fun t ->
- if (signal_fun si) t = N 0 then (signal_fun s0) t
- else if (signal_fun si) t = N 1 then (signal_fun s1) t
- else if (signal_fun si) t = N 2 then (signal_fun s2) t
- else raise (Signal_operation "select3 index should be 0 or 1 or 2.")
- in
- (f, new_signal);;
-
-
-(** val signal_prefix : signal -> signal -> signal,
-[signal_prefix s0 s1] returns s0(0) if t = 0, s1(t-1) if t > 0, frequency same to s1.*)
-let signal_prefix = fun s0 -> fun s1 ->
- let new_signal = fun t ->
- if t = 0 then (signal_fun s0) 0
- else if t > 0 then (signal_fun s1) t
- else raise (Signal_operation "prefix time cannot be < 0.")
- in
- (frequency s1, new_signal);;
+let delay_memory_length = 10000;;
+
+class signal : int -> (time -> value_type) -> signal_type =
+ fun (freq_init : int) ->
+ fun (func_init : time -> value_type) ->
+ object (self)
+ val mutable signal_func = func_init
+ val mutable memory_length = 0
+ method frequency = freq_init
+ method at = signal_func
+
+ method private check_freq : signal_type list -> int =
+ fun (sl : signal_type list) ->
+ let check : int -> signal_type -> int =
+ fun (f : int) ->
+ fun (s : signal_type) ->
+ if f = s#frequency || s#frequency = 0 then f
+ else if f = 0 then s#frequency
+ else raise (Signal_operation "frequency not matched.") in
+ List.fold_left check self#frequency sl
+
+ method private add_memory : int -> unit =
+ fun (length : int) ->
+ assert (length >= 0);
+ if memory_length >= length then ()
+ else
+ let memory = Hashtbl.create length in
+ let func : time -> value =
+ fun (t : time) ->
+ try Hashtbl.find memory t
+ with Not_found ->
+ let result = func_init t in
+ let () = Hashtbl.replace memory t result in
+ let () =
+ if (t - length) >= 0 then
+ Hashtbl.remove memory (t - length)
+ else () in
+ result in
+ memory_length <- length;
+ signal_func <- func
+
+ method private delay_by : int -> time -> value =
+ fun i -> fun t ->
+ if (t - i) >= 0 then
+ self#at (t - i)
+ else if t >= 0 && (t - i) < 0 then
+ (self#at 0)#zero
+ else raise (Signal_operation "Delay time < 0.")
+
+ method private prim1 :
+ (time -> value_type) -> signal_type =
+ fun (func : time -> value_type) ->
+ let freq = self#frequency in
+ new signal freq func
+
+ method private prim2 :
+ (time -> value_type -> value_type) -> signal_type -> signal_type =
+ fun (func_binary : time -> value_type -> value_type) ->
+ fun (s : signal_type) ->
+ let freq = self#check_freq [s] in
+ let func = fun t -> (func_binary t) (s#at t) in
+ new signal freq func
+
+ method neg = self#prim1 (fun t -> (self#at t)#neg)
+ method floor = self#prim1 (fun t -> (self#at t)#floor)
+ method sin = self#prim1 (fun t -> (self#at t)#sin)
+ method cos = self#prim1 (fun t -> (self#at t)#cos)
+ method atan = self#prim1 (fun t -> (self#at t)#atan)
+ method sqrt = self#prim1 (fun t -> (self#at t)#sqrt)
+ method int = self#prim1 (fun t -> (self#at t)#int)
+
+ method add = self#prim2 (fun t -> (self#at t)#add)
+ method sub = self#prim2 (fun t -> (self#at t)#sub)
+ method mul = self#prim2 (fun t -> (self#at t)#mul)
+ method div = self#prim2 (fun t -> (self#at t)#div)
+ method atan2 = self#prim2 (fun t -> (self#at t)#atan2)
+ method _mod = self#prim2 (fun t -> (self#at t)#_mod)
+ method larger = self#prim2 (fun t -> (self#at t)#larger)
+ method smaller = self#prim2 (fun t -> (self#at t)#smaller)
+
+ method delay : signal_type -> signal_type =
+ fun (s : signal_type) ->
+ let freq = self#check_freq [s] in
+ let () = self#add_memory delay_memory_length in
+ let func : time -> value_type =
+ fun (t : time) ->
+ let i = (s#at t)#to_int in
+ self#delay_by t i in
+ new signal freq func
+
+ method mem : signal_type =
+ let freq = self#frequency in
+ let () = self#add_memory 1 in
+ let func = fun (t : time) -> self#delay_by t 1 in
+ new signal freq func
+
+ method rdtable : signal_type -> signal_type -> signal_type =
+ fun (s_size : signal_type) ->
+ fun (s_index : signal_type) ->
+ let freq = self#check_freq [s_index] in
+ let () = self#add_memory ((s_size#at 0)#to_int) in
+ let func : time -> value_type = fun t ->
+ self#at ((s_index#at t)#to_int) in
+ new signal freq func
+
+ method select2 : signal_type -> signal_type -> signal_type =
+ fun s_first ->
+ fun s_second ->
+ let freq = self#check_freq [s_first; s_second] in
+ let func : time -> value_type =
+ fun t -> let i = (self#at t)#to_int in
+ if i = 0 then s_first#at t
+ else if i = 1 then s_second#at t
+ else raise (Signal_operation "select2 index 0|1.") in
+ new signal freq func
+
+ method select3 :
+ signal_type -> signal_type -> signal_type -> signal_type =
+ fun s_first -> fun s_second -> fun s_third ->
+ let freq = self#check_freq [s_first; s_second; s_third] in
+ let func : time -> value_type =
+ fun t -> let i = (self#at t)#to_int in
+ if i = 0 then s_first#at t
+ else if i = 1 then s_second#at t
+ else if i = 2 then s_third#at t
+ else raise (Signal_operation "select2 index 0|1.") in
+ new signal freq func
+
+ method prefix : signal_type -> signal_type =
+ fun (s_init : signal_type) ->
+ let func : time -> value_type =
+ fun t ->
+ if t = 0 then s_init#at 0
+ else if t > 0 then self#at t
+ else raise (Signal_operation "prefix time < 0.") in
+ new signal self#frequency func
+
+
+ method vectorize : signal_type -> signal_type =
+ fun s_size ->
+ let size = (s_size#at 0)#to_int in
+ if size <= 0 then
+ raise (Signal_operation "Vectorize: size <= 0.")
+ else
+ let freq = self#frequency / size in
+ let func : time -> value_type =
+ fun t ->
+ let vec = fun i -> (self#at (size * t + i))#get in
+ new value (Vec (new vector size vec)) in
+ new signal freq func
+
+
+ method serialize : signal_type =
+ let size =
+ match (self#at 0)#get with
+ | Vec vec -> vec#size
+ | _ -> raise (Signal_operation "Serialize: scalar input.") in
+ let freq = self#frequency * size in
+ let func : time -> value_type =
+ fun t ->
+ match (self#at (t/size))#get with
+ | Vec vec -> new value (vec#nth (t mod size))
+ | _ -> raise (Signal_operation
+ "Serialize: signal type not consistent.") in
+ new signal freq func
+
+ method vconcat : signal_type -> signal_type =
+ fun s ->
+ let freq = self#check_freq [s] in
+ let func : time -> value_type =
+ fun t ->
+ match ((self#at t)#get, (s#at t)#get) with
+ | (Vec vec1, Vec vec2) ->
+ let size1 = vec1#size in
+ let size2 = vec2#size in
+ let size = size1 + size2 in
+ let vec = fun i ->
+ if i < size1 then vec1#nth i
+ else vec2#nth (i - size1) in
+ new value (Vec (new vector size vec))
+ | _ -> raise (Signal_operation "Vconcat: scalar.") in
+ new signal freq func
+
+ method vpick : signal_type -> signal_type =
+ fun s_index ->
+ let freq = self#check_freq [s_index] in
+ let func : time -> value_type =
+ fun t ->
+ let i = (s_index#at t)#to_int in
+ match (self#at t)#get with
+ | Vec vec -> new value (vec#nth i)
+ | _ -> raise (Signal_operation "Vpick: scalar.") in
+ new signal freq func
+
+ end;;
-type value = N of int
+
+type index = int;;
+
+type time = int;;
+
+type basic = N of int
| R of float
- | Vec of int * (int -> value)
+ | Vec of vector
| Zero
- | W
+ | Error
+and vector = < size : int; nth : (index -> basic) >;;
+
+class type vector_type =
+ object
+ method size : int
+ method nth : index -> basic
+ end;;
+
+class type value_type =
+ object
+ method get : basic
+ method to_int : int
+ method to_float : float
+ method to_float_array : float array
+ method to_string : string
+ method normalize : unit
+ method add : value_type -> value_type
+ method neg : value_type
+ method sub : value_type -> value_type
+ method mul : value_type -> value_type
+ method recip : value_type
+ method div : value_type -> value_type
+ method zero : value_type
+ method floor : value_type
+ method int : value_type
+ method sin : value_type
+ method cos : value_type
+ method atan : value_type
+ method sqrt : value_type
+ method atan2 : value_type -> value_type
+ method _mod : value_type -> value_type
+ method larger : value_type -> value_type
+ method smaller : value_type -> value_type
+ end;;
+
-(** type symbol, defines valid identifiers in faust expressions.*)
type symbol = Add
| Sup
| Mul
| Rdtable
| Mod
| Vectorize
- | Concat
- | Nth
+ | Vconcat
+ | Vpick
| Serialize
| Larger
| Smaller
| Selecttwo
| Selectthree
-exception Symbol_not_defined;;
-
-let symbol_of_string = fun s ->
- match s with
- |"+" -> Add
- |"-" -> Sup
- |"*" -> Mul
- |"/" -> Div
- |"_" -> Pass
- |"!" -> Stop
- |"mem" -> Mem
- |"@" -> Delay
- |"floor" -> Floor
- |"int" -> Int
- |"sin" -> Sin
- |"cos" -> Cos
- |"atan" -> Atan
- |"atantwo" -> Atantwo
- |"sqrt" -> Sqrt
- |"rdtable" -> Rdtable
- |"%" -> Mod
- |"vectorize" -> Vectorize
- |"#" -> Concat
- |"[]" -> Nth
- |"serialize" -> Serialize
- |">" -> Larger
- |"<" -> Smaller
- |"prefix" -> Prefix
- |"selecttwo" -> Selecttwo
- |"selectthree" -> Selectthree
- | _ -> raise Symbol_not_defined
-
-
-
-type signal = int * (int -> value)
-
type faust_exp =
- Const of value
+ Const of basic
| Ident of symbol
| Par of faust_exp * faust_exp
| Seq of faust_exp * faust_exp
| Merge of faust_exp * faust_exp
-type dimension = End of (int * int)
- | Tree of (int * int) * (dimension * dimension)
+class type signal_type =
+ object
+ method frequency : int
+ method at : time -> value_type
+ method add : signal_type -> signal_type
+ method neg : signal_type
+ method sub : signal_type -> signal_type
+ method mul : signal_type -> signal_type
+ method div : signal_type -> signal_type
+ method delay : signal_type -> signal_type
+ method mem : signal_type
+ method vectorize : signal_type -> signal_type
+ method serialize : signal_type
+ method vconcat : signal_type -> signal_type
+ method vpick : signal_type -> signal_type
+ method floor : signal_type
+ method int : signal_type
+ method sin : signal_type
+ method cos : signal_type
+ method atan : signal_type
+ method atan2 : signal_type -> signal_type
+ method sqrt : signal_type
+ method _mod : signal_type -> signal_type
+ method larger : signal_type -> signal_type
+ method smaller : signal_type -> signal_type
+ method rdtable : signal_type -> signal_type -> signal_type
+ method select2 : signal_type -> signal_type -> signal_type
+ method select3 : signal_type -> signal_type -> signal_type -> signal_type
+ method prefix : signal_type -> signal_type
+ end;;
+
+
+class type beam_type =
+ object
+ method length : int
+ method sub : start: int -> length: int -> beam_type
+ method append : beam_type -> beam_type
+ method matching : size: int -> beam_type
+ method time : time -> basic list
+ method output : length: int -> (int list) * (float array list)
+ end;;
+
+
+class type dimension_type =
+ object
+ method input : int
+ method output : int
+ end;;
+
+
+class type expression_type =
+ object
+ method get_exp : faust_exp
+ method get_dim : dimension_type
+ method get_delay : int
+ method to_string : string
+ method evaluate : beam_type -> beam_type
+ end;;
Module: Value
Description: basic data type in the vectorial faust interpreter.
@author WANG Haisheng
- Created: 31/05/2013 Modified: 03/06/2013
+ Created: 31/05/2013 Modified: 17/07/2013
*)
open Types;;
-
-(* EXCEPTIONS *)
-
-(** Exception raised in convertions between float/int and type 'Value'.*)
-exception Convert_Error of string;;
-
-(** Exception raised in type 'Value' operations.*)
-exception Value_operation of string;;
-
-
-(* MACRO *)
-
-(** Macro constants of the file.*)
-type value_macro = Faust_Max_int
- | Faust_Min_int
- | Faust_Bits_int;;
-
-(** val value_macro_to_value : value_macro -> int.*)
-let value_macro_to_int m = match m with
- |Faust_Max_int -> 2147483647
- |Faust_Min_int -> -2147483648
- |Faust_Bits_int -> 32;;
-
-
-(* VALUE CONVERT FUNCTIONS *)
-
-(** val return_N : int -> value, convert from int to value N.*)
-let return_N i = N i;;
-
-(** val return_R : float -> value, convert from float to value R.*)
-let return_R f = R f;;
-
-(** val return_Vec : int * (int -> value) -> value, convert (size, vec) to value Vec.*)
-let return_Vec (size, vec) = Vec (size, vec);;
-
-(** val fail, return value W.*)
-let fail = W;;
-
-(** val take_off_N : value -> int, convert from value N to int.
-Attention: Zero and W are converted to 0.*)
-let rec take_off_N v =
- match v with
- |N i -> i
- |R f ->
- raise (Convert_Error "float take_off_N int")
- |Vec (size, vec) ->
- raise (Convert_Error "take_off_N can not convert vector.")
- |Zero -> 0
- |W -> 0;; (* Danger! *)
-
-(** val take_off_R : value -> float, convert from value R to float.
-Attention: Zero and W are converted to 0.0, int converted to float.*)
-let take_off_R v =
- match v with
- |N i -> float_of_int i
- |R f -> f
- |Vec (size, vec) ->
- raise (Convert_Error "take_off_R can not convert vector.")
- |Zero -> 0.
- |W -> 0.;;
-
-(** val convert_back_r : value -> float array,
-return a float array of size 1 if v is N|R|Zero|W, a float array of size n if v is Vec.*)
-let convert_back_R v =
- match v with
- |N i -> [| float_of_int i |]
- |R f -> [| f |]
- (** realise the function int -> value into float list.*)
- |Vec (size, vec) ->
- let result_value_array = Array.init size vec in
- let result_float_array = Array.map take_off_R result_value_array in
- result_float_array
- |Zero -> [| 0. |]
- |W -> [| 0. |];;
-
-
-
-(* AUXILIARY FUNCTIONS*)
-
-(** val string_of_value : value -> string, converts value to following
-strings "N i" | "R f" | "Vec" | "Zero" | "W".*)
-let rec string_of_value v = match v with
- |N i1 -> "N " ^ (string_of_int i1)
- |R f1 -> "R " ^ (string_of_float f1)
- |Vec (size, vec) -> "Vec"
- |Zero -> "Zero"
- |W -> "W";;
-
-(** val print_value_list: value list -> unit, prints to console the value list.*)
-let print_value_list value_list =
- let s = ref "[" in
- let n = List.length value_list in
- for i = 0 to n - 1 do
- let current = List.nth value_list i in
- s := if i + 1 < n then !s ^ string_of_value current ^ "; "
- else !s ^ string_of_value current ^ "]"
- done;
- print_endline !s;;
-
-
-(** val factory_add_memory : (int -> 'b) -> int -> (int -> 'b),
-[factory_add_memory f n] adds a memory of size n to fun f.*)
-let factory_add_memory = fun f -> fun n ->
- if n > 0 then
- (
- let memory = Hashtbl.create n in
- let new_fun = fun i ->
- try Hashtbl.find memory i
- with Not_found ->
- let result = f i in
- let () = Hashtbl.replace memory i result in
- let () = Hashtbl.remove memory (i - n) in
- result
- in
- new_fun
- )
- else raise (Value_operation "memory length cannot be < 0." );;
-
-
-(** val v_memory : value -> value, returns value Vec with memory.*)
-let v_memory v = match v with
- | Vec (size, vec) ->
- let memory_array = Array.create size W in
- let index_array = Array.create size false in
- let new_vec = fun i ->
- if i >= 0 && i < size then
- (
- if index_array.(i) then
- memory_array.(i)
- else
- let result = vec i in
- let () = memory_array.(i) <- result in
- let () = index_array.(i) <- true in
- result
- )
- else raise (Invalid_argument "vector overflow.")
- in
- return_Vec (size, new_vec)
- | _ -> v;;
-
-
-(** val v_list_memory : value list -> value list, returns value list with memory. *)
-let v_list_memory vl = List.map v_memory vl;;
-
-
-(** val make_vector : int -> (int -> value) -> value,
-[make_vector size vec], return a value Vec of (size, vec).*)
-let make_vector = fun size -> fun vec ->
- let new_vec = fun i ->
- if i >= 0 && i < size then vec i
- else raise (Value_operation "vector overflow")
- in
- v_memory (return_Vec (size, new_vec));;
-
-
-(* VALUE OPERATIONS *)
-
-(** val normalize: value -> value, normalize value to bounded [-2147483648,2147483647].*)
-let rec normalize v =
- let n = 2. ** float_of_int (value_macro_to_int Faust_Bits_int) in
- match v with
- |N i ->
- if i > value_macro_to_int Faust_Max_int then
- return_N (i - int_of_float (n *. floor (((float_of_int i) +. n/.2.)/.n)))
- else if i < value_macro_to_int Faust_Min_int then
- return_N (i + int_of_float (n *. floor ((n/.2. -. (float_of_int i) -. 1.)/.n)))
- else return_N i
- |R f ->
- if f > float_of_int (value_macro_to_int Faust_Max_int) then
- return_R (f -. (n *. floor ((f +. n/.2.)/.n)))
- else if f < float_of_int (value_macro_to_int Faust_Min_int) then
- return_R (f +. (n *. floor ((n/.2. -. f -. 1.)/.n)))
- else return_R f
- |Vec (size, vec) -> make_vector size (fun i -> normalize (vec i))
- |Zero -> Zero
- |W -> W;;
-
-
-(** val v_add : value -> value -> value, value addition, recursive for value.Vec.*)
-let rec v_add v1 v2 = match v1 with
- |Vec (size1, vec1) ->
- (
- match v2 with
- |Vec (size2, vec2) ->
- if size1 = size2 then
- make_vector size1 (fun i -> v_add (vec1 i) (vec2 i))
- else raise (Value_operation "vector size not matched.")
- |Zero -> v1
- |_ -> raise (Value_operation "Vector_Scalar vec1 +~ sca2")
- )
- |N i1 ->
- (
- match v2 with
- |N i2 -> normalize (return_N (i1 + i2))
- |R f2 -> normalize (return_R ((float_of_int i1) +. f2))
- |Vec (size2, vec2) -> raise (Value_operation "Vector_Scalar i1 +~ vec2")
- |Zero -> v1
- |W -> fail
- )
- |R f1 ->
- (
- match v2 with
- |N i2 -> normalize (return_R (f1 +. (float_of_int i2)))
- |R f2 -> normalize (return_R (f1 +. f2))
- |Vec (size2, vec2) -> raise (Value_operation "Vector_Scalar f1 +~ vec2")
- |Zero -> v1
- |W -> fail
- )
- |Zero -> v2
- |W ->
- (
- match v2 with
- |N i2 -> fail
- |R f2 -> fail
- |Vec (size2, vec2) -> raise (Value_operation "Vector_Scalar W +~ vec2")
- |Zero -> v1
- |W -> fail
- );;
-
-
-(** val (+~) : value -> value -> value, operator of v_add.*)
-let (+~) v1 v2 = v_add v1 v2;;
-
-
-(** val v_neg : value -> value, v_neg v = -v.*)
-let rec v_neg v = match v with
- |N i -> return_N (-i)
- |R f -> return_R (-.f)
- |Vec (size, vec) -> make_vector size (fun i -> v_neg (vec i))
- |Zero -> Zero
- |W -> fail;;
-
-
-(** val v_sub : value -> value -> value, returns (v1 - v2).*)
-let v_sub v1 v2 = v_add v1 (v_neg v2);;
-
-
-(** val (-~) : value -> value -> value, operator of v_sub.*)
-let (-~) v1 v2 = v_sub v1 v2;;
-
-
-(** val v_mul : value -> value -> value, returns (v1 * v2), recursive for value.Vec.*)
-let rec v_mul v1 v2 = match v1 with
- |Vec (size1, vec1) ->
- (
- match v2 with
- |Vec (size2, vec2) ->
- if size1 = size2 then
- make_vector size1 (fun i -> v_mul (vec1 i) (vec2 i))
- else raise (Value_operation "vector size not matched.")
- |Zero -> make_vector size1 (fun i -> v_mul (vec1 i) Zero)
- |_ -> raise (Value_operation "Vector_Scalar vec1 *~ sca2")
- )
- |N i1 ->
- (
- match v2 with
- |N i2 -> normalize (return_N (i1 * i2))
- |R f2 -> normalize (return_R ((float_of_int i1) *. f2))
- |Vec (size2, vec2) ->
- raise (Value_operation "Vector_Scalar i1 *~ vec2")
- |Zero -> return_N 0
- |W -> if i1 = 0 then N 0 else fail
- )
- |R f1 ->
- (
- match v2 with
- |N i2 -> normalize (return_R (f1 *. (float_of_int i2)))
- |R f2 -> normalize (return_R (f1 *. f2))
- |Vec (size2, vec2) ->
- raise (Value_operation "Vector_Scalar f1 *~ vec2")
- |Zero -> return_R 0.
- |W -> if f1 = 0. then R 0. else fail
- )
- |Zero ->
- (
- match v2 with
- |N i2 -> return_N 0
- |R f2 -> return_R 0.
- |Vec (size2, vec2) -> make_vector size2 (fun i -> v_mul Zero (vec2 i))
- |Zero -> Zero
- |W -> Zero (* Danger! *)
- )
- |W ->
- (
- match v2 with
- |N i2 -> if i2 = 0 then N 0 else fail
- |R f2 -> if f2 = 0. then R 0. else fail
- |Vec (size2, vec2) ->
- raise (Value_operation "Vector_Scalar W +~ vec2")
- |Zero -> Zero
- |W -> fail
- );;
-
-
-(** val ( *~ ) : value -> value -> value, operator of v_mul.*)
-let ( *~ ) v1 v2 = v_mul v1 v2;;
-
-
-(** val v_recip : value -> value, v_recip v = 1./.v.*)
-let rec v_recip v = match v with
- |N i -> v_recip (R (float_of_int i))
- |R f -> if f = 0. then fail else return_R (1./.f)
- |Vec (size, vec) -> make_vector size (fun i -> v_recip (vec i))
- |Zero -> fail
- |W -> return_R 0. ;; (* Danger! *)
-
-
-(** val v_div : value -> value -> value, value division, returns (v1/.v2).*)
-let v_div v1 v2 =
- match (v1, v2) with
- | (N i1, N i2) -> N (i1/i2)
- | _ -> v_mul v1 (v_recip v2);;
-
-
-(** val (/~) : value -> value -> value, operator of v_div.*)
-let (/~) v1 v2 = v_div v1 v2;;
-
-
-(** val v_zero : value -> value, Attention: N i -> N 0 | R f -> R 0. | Zero -> Zero | W -> R 0.,
-and recursive for value.Vec.*)
-let rec v_zero v = match v with
- |N i -> N 0
- |R f -> R 0.
- |Vec (size, vec) -> make_vector size (fun i -> v_zero (vec i))
- |Zero -> Zero (* Danger! *)
- |W -> R 0.;; (* Danger! *)
-
-
-(** val v_floor : value -> value, returns floor of float, converts int to float, Zero to 0.,
- error to error, recursive for value.Vec.*)
-let rec v_floor v = match v with
- |N i -> return_R (float_of_int i)
- |R f -> return_R (floor f)
- |Vec (size, vec) -> make_vector size (fun i -> v_floor (vec i))
- |Zero -> return_R 0.
- |W -> W;;
-
-
-(** val v_int : value -> value, converts value to value.N, error to error, recursive for value.Vec.*)
-let rec v_int v = match v with
- |N i -> v
- |R f -> return_N (int_of_float f)
- |Vec (size, vec) -> make_vector size (fun i -> v_int (vec i))
- |Zero -> return_N 0
- |W -> W;;
-
-
-(** val v_sin : value -> value, returns sin(v), recursive for value.Vec.*)
-let rec v_sin v = match v with
- |N i -> return_R (sin (float_of_int i))
- |R f -> return_R (sin f)
- |Vec (size, vec) -> make_vector size (fun i -> v_sin (vec i))
- |Zero -> return_R (sin 0.)
- |W -> W;;
-
-(** val v_cos : value -> value, returns cos(v), recursive for value.Vec.*)
-let rec v_cos v = match v with
- |N i -> return_R (cos (float_of_int i))
- |R f -> return_R (cos f)
- |Vec (size, vec) -> make_vector size (fun i -> v_cos (vec i))
- |Zero -> return_R (cos 0.)
- |W -> W;;
-
-(** val v_atan : value -> value, returns atan(v), recursive for value.Vec.*)
-let rec v_atan v = match v with
- |N i -> return_R (atan (float_of_int i))
- |R f -> return_R (atan f)
- |Vec (size, vec) -> make_vector size (fun i -> v_atan (vec i))
- |Zero -> return_R (atan 0.)
- |W -> W;;
-
-
-(** val v_atantwo : value -> value, returns atantwo(v), recursive for value.Vec.*)
-let rec v_atantwo v1 v2 = match (v1, v2) with
- | (N i1, N i2) -> v_atantwo (R (float_of_int i1)) (R (float_of_int i2))
- | (N i1, R f2) -> v_atantwo (R (float_of_int i1)) v2
- | (N i1, Zero) -> v_atantwo (R (float_of_int i1)) (R 0.)
- | (N i1, Vec (size2, vec2)) -> raise (Value_operation "atan2 sca vec.")
- | (N i1, W) -> W
-
- | (R f1, N i2) -> v_atantwo v1 (R (float_of_int i2))
- | (R f1, R f2) -> R (atan2 f1 f2)
- | (R f1, Zero) -> v_atantwo v1 (R 0.)
- | (R f1, Vec (size2, vec2)) -> raise (Value_operation "atan2 sca vec.")
- | (R f1, W) -> W
-
- | (Vec (size1, vec1), Vec (size2, vec2)) -> make_vector size1 (fun i -> v_atantwo (vec1 i) (vec2 i))
- | (Vec (size1, vec1), Zero) -> make_vector size1 (fun i -> v_atantwo (vec1 i) Zero)
- | (Vec (size1, vec1), _) -> raise (Value_operation "atan2 vec sca.")
-
- | (Zero, N i2) -> v_atantwo (R 0.) (R (float_of_int i2))
- | (Zero, R f2) -> v_atantwo (R 0.) v2
- | (Zero, Vec (size2, vec2)) -> make_vector size2 (fun i -> v_atantwo Zero (vec2 i))
- | (Zero, Zero) -> v_atantwo (R 0.) (R 0.)
- | (Zero, W) -> W
-
- | (W, Vec (size2, vec2)) -> raise (Value_operation "atan2 sca vec.")
- | (W, _) -> W;;
-
-
-(** val v_sqrt : value -> value, returns sqrt(v), recursive for value.Vec.*)
-let rec v_sqrt v = match v with
- |N i ->
- if i >= 0 then return_R (sqrt (float_of_int i))
- else raise (Value_operation "sqrt parameter < 0.")
- |R f ->
- if f >= 0. then return_R (sqrt f)
- else raise (Value_operation "sqrt parameter < 0.")
- |Vec (size, vec) -> make_vector size (fun i -> v_sqrt (vec i))
- |Zero -> return_R (sqrt 0.)
- |W -> W;;
-
-
-(** val v_mod : value -> value -> value, returns (v1 % v2), recursive for value.Vec.*)
-let rec v_mod v1 v2 = match v1 with
- |N i1 ->
- (
- match v2 with
- |N i2 -> return_N (i1 mod i2)
- |R f2 -> return_N (i1 mod (int_of_float f2))
- |Vec (size, vec) -> raise (Value_operation "Scalaire_Vector: int mod vec.")
- |Zero -> raise (Value_operation "v1 mod v2: v2 cannot be zero.")
- |W -> W
- )
- |R f1 -> let i = return_N (int_of_float f1) in v_mod i v2
- |Vec (size1, vec1) ->
- (
- match v2 with
- |Vec (size2, vec2) ->
- if size1 = size2 then
- make_vector size1 (fun i -> v_mod (vec1 i) (vec2 i))
- else raise (Value_operation "vector size not matched.")
- |Zero -> raise (Value_operation "v1 mod v2: v2 cannot be zero.")
- |_ -> raise (Value_operation "Vector_Scalaire: vec mod int.")
- )
- |Zero ->
- (
- match v2 with
- |Vec (size2, vec2) ->
- let v = make_vector size2 (fun i -> Zero) in
- v_mod v v2
- |_ -> v_mod (N 0) v2
- )
- |W ->
- (
- match v2 with
- |Vec (size2, vec2) -> raise (Value_operation "Scalaire_Vector: int mod vec.")
- |Zero -> raise (Value_operation "v1 mod v2: v2 cannot be zero.")
- |_ -> W
- );;
-
-
-(** val v_larger_than_zero : value -> value, primitive comparison between value and zero,
-returns value.N 1 if true, value.N 0 if false.*)
-let rec v_larger_than_zero v = match v with
- |N i -> if i > 0 then return_N 1 else return_N 0
- |R f -> if f > 0. then return_N 1 else return_N 0
- |Vec (size, vec) -> make_vector size (fun i -> v_larger_than_zero (vec i))
- |Zero -> return_N 0
- |W -> W;;
-
-
-(** val v_sup : value -> value -> value, comparison of two values, returns value.N 1 if (v1 > v2),
-value.N 0 else.*)
-let v_sup v1 v2 = v_larger_than_zero (v1 -~ v2);;
-
-
-(** val v_inf : value -> value -> value, comparison of two values, returns value.N 1 if (v1 < v2),
-value.N 0 else.*)
-let v_inf v1 v2 = v_larger_than_zero (v2 -~ v1);;
-
+open Basic;;
+
+let convert : (basic -> 'a) -> basic -> 'a =
+ fun oper -> fun b -> oper b;;
+
+class value : basic -> value_type =
+ fun (b_init : basic) ->
+ object (self)
+ val mutable b = b_init
+ method get = b
+ method normalize = b <- basic_normalize self#get
+
+ method to_float = convert basic_to_float self#get
+ method to_int = convert basic_to_int self#get
+ method to_float_array = convert basic_to_float_array self#get
+ method to_string = convert basic_to_string self#get
+
+ method private prim1 : (basic -> basic) -> value =
+ fun oper ->
+ new value (oper self#get)
+
+ method neg = self#prim1 basic_neg
+ method recip = self#prim1 basic_recip
+ method zero = self#prim1 basic_zero
+ method floor = self#prim1 basic_floor
+ method int = self#prim1 basic_int
+ method sin = self#prim1 basic_sin
+ method cos = self#prim1 basic_cos
+ method atan = self#prim1 basic_atan
+ method sqrt = self#prim1 basic_sqrt
+
+ method private prim2 : (basic -> basic -> basic) -> value -> value =
+ fun oper ->
+ fun v ->
+ new value (oper self#get v#get)
+
+ method add = self#prim2 basic_add
+ method sub = self#prim2 basic_sub
+ method mul = self#prim2 basic_mul
+ method div = self#prim2 basic_div
+ method atan2 = self#prim2 basic_atan2
+ method _mod = self#prim2 basic_mod
+ method larger = self#prim2 basic_larger
+ method smaller = self#prim2 basic_smaller
+
+ end;;