From 0f40fdb54d0fc6505342d008deaa1e9c4c9dbcee Mon Sep 17 00:00:00 2001 From: Vivien Maisonneuve Date: Mon, 11 Aug 2014 18:07:05 +0200 Subject: [PATCH] Fix warnings in documentation generation --- doc/examples.rst | 31 ++++++++++++++++--------------- doc/polyhedra.rst | 6 +++--- 2 files changed, 19 insertions(+), 18 deletions(-) diff --git a/doc/examples.rst b/doc/examples.rst index 1884f49..ea044b8 100644 --- a/doc/examples.rst +++ b/doc/examples.rst @@ -2,7 +2,8 @@ LinPy Examples ============== Basic Examples -------------- +-------------- + To create any polyhedron, first define the symbols used. Then use the polyhedron functions to define the constraints. The following is a simple running example illustrating some different operations and properties that can be performed by LinPy with two squares. >>> from linpy import * @@ -11,11 +12,11 @@ Basic Examples >>> square1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2) >>> square1 And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)) - + Binary operations and properties examples: - + >>> square2 = Le(1, x) & Le(x, 3) & Le(1, y) & Le(y, 3) - >>> #test equality + >>> #test equality >>> square1 == square2 False >>> # compute the union of two polyhedrons @@ -30,9 +31,9 @@ Basic Examples >>> # compute the convex union of two polyhedrons >>> Polyhedron(square1 | sqaure2) And(Ge(x, 0), Ge(y, 0), Ge(-y + 3, 0), Ge(-x + 3, 0), Ge(x - y + 2, 0), Ge(-x + y + 2, 0)) - + Unary operation and properties examples: - + >>> square1.isempty() False >>> square1.symbols() @@ -42,7 +43,7 @@ Basic Examples >>> # project out the variable x >>> square1.project([x]) And(Ge(-y + 2, 0), Ge(y, 0)) - + Plot Examples ------------- @@ -78,9 +79,9 @@ LinPy can also inspect a polygon's vertices and the integer points included in t >>> diamond.points() [Point({x: -1, y: 0}), Point({x: 0, y: -1}), Point({x: 0, y: 0}), \ Point({x: 0, y: 1}), Point({x: 1, y: 0})] - + The user also can pass another plot to the :meth:`plot` method. This can be useful to compare two polyhedrons on the same axis. This example illustrates the union of two squares. - + >>> from linpy import * >>> import matplotlib.pyplot as plt >>> from matplotlib import pylab @@ -93,11 +94,11 @@ The user also can pass another plot to the :meth:`plot` method. This can be usef >>> square2.plot(plot, facecolor='blue', alpha=0.3) >>> squares = Polyhedron(square1 + square2) >>> squares.plot(plot, facecolor='blue', alpha=0.3) - >>> pylab.show() - + >>> pylab.show() + .. figure:: images/union.jpg - :align: center - - - + :align: center + + + diff --git a/doc/polyhedra.rst b/doc/polyhedra.rst index 605dded..1cb9396 100644 --- a/doc/polyhedra.rst +++ b/doc/polyhedra.rst @@ -4,12 +4,12 @@ Polyhedra Module Polyhedron class allows users to build and inspect polyherons. .. py:class:: Polyhedron - - .. py:property:: equalities(self) + + .. attribute:: equalities(self) Return a list of the equalities in a polyhedron. - .. py:method:: inequalities(self) + .. attribute:: inequalities(self) Return a list of the inequalities in a polyhedron. -- 2.20.1