From: Danielle Bolan Date: Thu, 7 Aug 2014 15:17:18 +0000 (+0200) Subject: Update docs X-Git-Tag: 1.0~83 X-Git-Url: https://scm.cri.mines-paristech.fr/git/linpy.git/commitdiff_plain/2baf863a42cd79849834f7d8ad4d4f428929e3d1?ds=sidebyside Update docs --- diff --git a/doc/examples.rst b/doc/examples.rst index a4b0f5a..62a7dfd 100644 --- a/doc/examples.rst +++ b/doc/examples.rst @@ -1,9 +1,9 @@ LinPy Examples ============== -Creating a Polyhedron ------------------ - To create any polyhedron, first define the symbols used. Then use the polyhedron functions to define the constraints for the polyhedron. This example creates a square. +Basic Examples +------------- + To create any polyhedron, first define the symbols used. Then use the polyhedron functions to define the constraints. The following is a simple running example illustrating some different operations and properties that can be performed by LinPy with two squares. >>> from linpy import * >>> x, y = symbols('x y') @@ -11,25 +11,37 @@ Creating a Polyhedron >>> square1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2) >>> print(square1) And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)) - -Urnary Operations ------------------ - + + Binary operations and properties examples: + + >>> square2 = Le(2, x) & Le(x, 4) & Le(2, y) & Le(y, 4) + >>> #test equality + >>> square1 == square2 + False + >>> # find the union of two polygons + >>> square1 + square2 + Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 2, 0), Ge(-x + 4, 0), Ge(y - 2, 0), Ge(-y + 4, 0))) + >>> # check if square1 and square2 are disjoint + >>> square1.disjoint(square2) + False + >>> # find the intersection of two polygons + >>> square1 & square2 + And(Eq(y - 2, 0), Eq(x - 2, 0)) + >>> # find the convex union of two polygons + >>> Polyhedron(square1 | sqaure2) + And(Ge(x, 0), Ge(-x + 4, 0), Ge(y, 0), Ge(-y + 4, 0), Ge(x - y + 2, 0), Ge(-x + y + 2, 0)) + + Unary operation and properties examples: + >>> square1.isempty() False - >>> square1.isbounded() - True - -Binary Operations ------------------ - - >>> square2 = Le(2, x) & Le(x, 4) & Le(2, y) & Le(y, 4) - >>> square1 + square2 - Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 2, 0), Ge(-x + 4, 0), Ge(y - 2, 0), Ge(-y + 4, 0))) - >>> # check if square1 and square2 are disjoint - >>> square1.disjoint(square2) - False - + >>> square1.symbols() + (x, y) + >>> square1.inequalities + (x, -x + 2, y, -y + 2) + >>> square1.project([x]) + And(Ge(-y + 2, 0), Ge(y, 0)) + Plot Examples ------------- @@ -51,7 +63,7 @@ Plot Examples .. figure:: images/cube.jpg :align: center - The user can also inspect a polygon's vertices and the integer points included in the polygon. + LinPy can also inspect a polygon's vertices and the integer points included in the polygon. >>> diamond = Ge(y, x - 1) & Le(y, x + 1) & Ge(y, -x - 1) & Le(y, -x + 1) >>> diamond.vertices() @@ -59,9 +71,3 @@ Plot Examples >>> diamond.points() [Point({x: -1, y: 0}), Point({x: 0, y: -1}), Point({x: 0, y: 0}), Point({x: 0, y: 1}), Point({x: 1, y: 0})] - - - - - - diff --git a/doc/index.rst b/doc/index.rst index c5fe0b4..b3a9271 100644 --- a/doc/index.rst +++ b/doc/index.rst @@ -6,12 +6,12 @@ Welcome to LinPy’s documentation! ================================= -LinPy is a Python library for symbolic mathematics. +LinPy is a Python wrapper for the Integer Set Library (isl) by Sven Verdoolaege. Isl ia a C library for manipulating sets and relations of integer points bounded by linear constraints. + If you are new to LinPy, start with the Examples. This is the central page for all of LinPy’s documentation. - Contents: .. toctree::