islbset = self._toislbasicset(self.equalities, self.inequalities, self.symbols)
vertices = libisl.isl_basic_set_compute_vertices(islbset);
vertices = islhelper.isl_vertices_vertices(vertices)
- points = {}
- num = 0
- vertices_points = []
+ points = []
for vertex in vertices:
+ expr = libisl.isl_vertex_get_expr(vertex)
+ point = {}
if islhelper.isl_version < '0.13':
- expr = libisl.isl_vertex_get_expr(vertex)
- constraints = islhelper.isl_basic_set_constraints(expr) #get bset constraints
- for index, dim in enumerate(self.symbols):
- for c in constraints: #for each constraint
- constant = libisl.isl_constraint_get_constant_val(c) #get constant value
- constant = islhelper.isl_val_to_int(constant)
- coefficient = libisl.isl_constraint_get_coefficient_val(c,libisl.isl_dim_set, index)
- coefficient = islhelper.isl_val_to_int(coefficient) #get coefficient
+ constraints = islhelper.isl_basic_set_constraints(expr)
+ for constraint in constraints:
+ constant = libisl.isl_constraint_get_constant_val(constraint)
+ constant = islhelper.isl_val_to_int(constant)
+ for index, symbol in enumerate(self.symbols):
+ coefficient = libisl.isl_constraint_get_coefficient_val(constraint,
+ libisl.isl_dim_set, index)
+ coefficient = islhelper.isl_val_to_int(coefficient)
if coefficient != 0:
- num = -Fraction(constant, coefficient)
- points[dim]= float(num)
- vertices_points.append(points.copy())
+ coordinate = -Fraction(constant, coefficient)
+ point[symbol]= coordinate
else:
- points = []
+ # horrible hack, find a cleaner solution
string = islhelper.isl_multi_aff_to_str(expr)
matches = self._RE_COORDINATE.finditer(string)
- point = {}
for symbol, match in zip(self.symbols, matches):
numerator = int(match.group('num'))
denominator = match.group('den')
denominator = 1 if denominator is None else int(denominator)
coordinate = Fraction(numerator, denominator)
point[symbol] = coordinate
- points.append(point)
- return vertices_points
-
+ points.append(point)
+ return points
+
def points(self):
if not self.isbounded():
raise ValueError('domain must be bounded')