print('lexographic min of sq2:', sq2.lexmin()) #test lexmax()
print('lexographic max of sq2:', sq2.lexmax()) #test lexmax()
print()
-print('Polyhedral hull of sq1 + sq2 is:', q.polyhedral_hull()) #test polyhedral hull
+print('Polyhedral hull of sq1 + sq2 is:', q.aspolyhedron()) #test polyhedral hull
print()
print('is sq1 bounded?', sq1.isbounded()) #unbounded should return True
print('is sq5 bounded?', sq5.isbounded()) #unbounded should return False
islset = libisl.isl_set_remove_redundancies(islset)
return self._fromislset(islset, self.symbols)
- def polyhedral_hull(self):
+ def aspolyhedron(self):
# several types of hull are available
# polyhedral seems to be the more appropriate, to be checked
from .polyhedra import Polyhedron
elif isinstance(equalities, Domain):
if inequalities is not None:
raise TypeError('too many arguments')
- return equalities.polyhedral_hull()
+ return equalities.aspolyhedron()
if equalities is None:
equalities = []
else:
libisl.isl_basic_set_free(islbset)
return universe
- def polyhedral_hull(self):
+ def aspolyhedron(self):
return self
@classmethod
self.assertEqual(~self.universe, Empty)
self.assertEqual(~self.empty, self.universe)
- def test_polyhedral_hull(self):
- self.assertEqual(self.square1.polyhedral_hull(), self.hull)
- self.assertEqual(self.universe.polyhedral_hull(), self.universe)
- self.assertEqual(self.empty.polyhedral_hull(), self.empty)
+ def test_aspolyhedron(self):
+ self.assertEqual(self.square1.aspolyhedron(), self.hull)
+ self.assertEqual(self.universe.aspolyhedron(), self.universe)
+ self.assertEqual(self.empty.aspolyhedron(), self.empty)
def test_project(self):
self.assertEqual(self.square1.project(symbols('x')), self.dropped)