return NULL;
}
bset = (isl_basic_set *) ptr;
- bset = isl_basic_set_finalize(bset); // this instruction should not be required
n = isl_basic_set_n_constraint(bset);
if (n == -1) {
PyErr_SetString(PyExc_RuntimeError,
from .polyhedra import Polyhedron
islset = self._toislset(self.polyhedra, self.symbols)
islbset = libisl.isl_set_sample(islset)
+ # next instruction should NOT be required
+ islbset = libisl.isl_basic_set_finalize(islbset)
return Polyhedron._fromislbasicset(islbset, self.symbols)
def intersection(self, *others):
islset = self._toislset(self.polyhedra, self.symbols)
islset = libisl.isl_set_lexmax(islset)
return self._fromislset(islset, self.symbols)
-
+
def num_parameters(self):
#could be useful with large, complicated polyhedrons
islbset = self._toislbasicset(self.equalities, self.inequalities, self.symbols)
num = libisl.isl_basic_set_dim(islbset, libisl.isl_dim_set)
return num
-
+
def involves_dims(self, dims):
#could be useful with large, complicated polyhedrons
islset = self._toislset(self.polyhedra, self.symbols)
for dim in dims:
if dim in symbols:
first = symbols.index(dims[0])
- n +=1
+ n +=1
else:
first = 0
- else:
- return False
+ else:
+ return False
value = bool(libisl.isl_set_involves_dims(islset, libisl.isl_dim_set, first, n))
libisl.isl_set_free(islset)
return value