def sample(self):
from .polyhedra import Polyhedron
islset = self._toislset(self.polyhedra, self.symbols)
- islbset = libisl.isl_set_sample(islset)
- # next instruction should NOT be required
- islbset = libisl.isl_basic_set_finalize(islbset)
- return Polyhedron._fromislbasicset(islbset, self.symbols)
+ islpoint = libisl.isl_set_sample_point(islset)
+ point = {}
+ for index, symbol in enumerate(self.symbols):
+ coordinate = libisl.isl_point_get_coordinate_val(islpoint,
+ libisl.isl_dim_set, index)
+ coordinate = islhelper.isl_val_to_int(coordinate)
+ point[symbol] = coordinate
+ if bool(libisl.isl_point_is_void(islpoint)):
+ point = None
+ libisl.isl_point_free(islpoint)
+ return point
def intersection(self, *others):
if len(others) == 0:
self.complement = Or(Ge(-x - 1, 0), Ge(x - 3, 0), And(Ge(x, 0), Ge(-x + 2, 0), Ge(-y - 1, 0)), And(Ge(x, 0), Ge(-x + 2, 0), Ge(y - 3, 0)))
self.hull = And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0))
self.dropped = And(Ge(y, 0), Ge(-y + 2, 0))
- self.sample = And(Eq(y - 3, 0), Eq(x - 1, 0))
self.intersection = And(Ge(x - 1, 0), Ge(-x + 2, 0), Ge(y - 1, 0), Ge(-y + 2, 0))
self.union = Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0)))
self.sum1 = Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0)))
self.assertEqual(self.empty.simplify(), Empty)
def test_sample(self):
- self.assertEqual(self.square6.sample(), self.sample)
- self.assertEqual(self.empty.sample(), Empty)
- self.assertEqual(self.universe.sample(), self.universe)
+ self.assertEqual(self.square6.sample(), {Symbol('x'): 1, Symbol('y'): 3})
+ self.assertEqual(self.empty.sample(), None)
+ self.assertEqual(self.universe.sample(), {})
def test_intersection(self):
self.assertEqual(self.square1.intersection(self.square2), self.intersection)