X-Git-Url: https://scm.cri.mines-paristech.fr/git/linpy.git/blobdiff_plain/c5ec50e02bb591e2ce3b28131424d21c02255f3b..e2266a6ca10276d2af3065f9e140d994459b92f3:/examples/diamonds.py diff --git a/examples/diamonds.py b/examples/diamonds.py index 1be9fbb..572a870 100755 --- a/examples/diamonds.py +++ b/examples/diamonds.py @@ -9,31 +9,23 @@ from pypol import * x, y, z = symbols('x y z') -fig = plt.figure() +fig = plt.figure(facecolor='white') -diam_plot = fig.add_subplot(2, 2, 1) +diam_plot = fig.add_subplot(2, 2, 1, aspect='equal') diam_plot.set_title('Diamond') -diam_plot.set_xlim(-1, 1) -diam_plot.set_ylim(-1, 1) diam = Ge(y, x - 1) & Le(y, x + 1) & Ge(y, -x - 1) & Le(y, -x + 1) diam.plot(diam_plot, fill=True, edgecolor='red', facecolor='yellow') -cham_plot = fig.add_subplot(2, 2, 2, projection='3d') +cham_plot = fig.add_subplot(2, 2, 2, projection='3d', aspect='equal') cham_plot.set_title('Chamfered cube') -cham_plot.set_xlim(0, 3) -cham_plot.set_ylim(0, 3) -cham_plot.set_zlim(0, 3) cham = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3) & Le(0, z) & Le(z, 3) & \ Le(z - 2, x) & Le(x, z + 2) & Le(1 - z, x) & Le(x, 5 - z) & \ Le(z - 2, y) & Le(y, z + 2) & Le(1 - z, y) & Le(y, 5 - z) & \ Le(y - 2, x) & Le(x, y + 2) & Le(1 - y, x) & Le(x, 5 - y) cham.plot(cham_plot, facecolors=(1, 0, 0, 0.75)) -rhom_plot = fig.add_subplot(2, 2, 3, projection='3d') +rhom_plot = fig.add_subplot(2, 2, 3, projection='3d', aspect='equal') rhom_plot.set_title('Rhombicuboctahedron') -rhom_plot.set_xlim(0, 3) -rhom_plot.set_ylim(0, 3) -rhom_plot.set_zlim(0, 3) rhom = cham & \ Le(x + y + z, 7) & Ge(-2, -x - y - z) & \ Le(-1, x + y - z) & Le(x + y - z, 4) & \ @@ -41,11 +33,8 @@ rhom = cham & \ Le(-1, -x + y + z) & Le(-x + y + z, 4) rhom.plot(rhom_plot, facecolors=(0, 1, 0, 0.75)) -cubo_plot = fig.add_subplot(2, 2, 4, projection='3d') +cubo_plot = fig.add_subplot(2, 2, 4, projection='3d', aspect='equal') cubo_plot.set_title('Truncated cuboctahedron') -cubo_plot.set_xlim(0, 5) -cubo_plot.set_ylim(0, 5) -cubo_plot.set_zlim(0, 5) cubo = Le(0, x) & Le(x, 5) & Le(0, y) & Le(y, 5) & Le(0, z) & Le(z, 5) & \ Le(x -4, y) & Le(y, x + 4) & Le(-x + 1, y) & Le(y, -x + 9) & \ Le(y -4, z) & Le(z, y + 4) & Le(-y + 1, z) & Le(z, -y + 9) & \