X-Git-Url: https://scm.cri.mines-paristech.fr/git/linpy.git/blobdiff_plain/bf0ba2bac20a5c3f288001a78275e83a0106a02a..f2561050230a9c56f842acb698853f6998528aaa:/examples/squares.py?ds=sidebyside diff --git a/examples/squares.py b/examples/squares.py index 0f4e1a5..d606631 100755 --- a/examples/squares.py +++ b/examples/squares.py @@ -2,15 +2,15 @@ from pypol import * -x, y = symbols('x y') +a, x, y, z = symbols('a x y z') sq1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2) sq2 = Le(2, x) & Le(x, 4) & Le(2, y) & Le(y, 4) - sq3 = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3) sq4 = Le(1, x) & Le(x, 2) & Le(1, y) & Le(y, 2) -sq5 = Le(1, x) & Le(x, 2) & Le(1, y) +sq5 = Le(1, x) & Le(x, 2) & Le(1, y) sq6 = Le(1, x) & Le(x, 2) & Le(1, y) & Eq(y, 3) +sq7 = Le(0, x) & Le(x, 2) & Le(0, y) & Eq(z, 2) & Le(a, 3) u = Polyhedron([]) x = sq1 - sq2 @@ -20,7 +20,7 @@ print('sq3 =', sq3) #print correct square print('sq4 =', sq4) #print correct square print('u =', u) #print correct square print() -print('¬sq1 =', ~sq1) #test compliment +print('¬sq1 =', ~sq1) #test complement print() print('sq1 + sq1 =', sq1 + sq2) #test addition print('sq1 + sq2 =', Polyhedron(sq1 + sq2)) #test addition @@ -39,7 +39,7 @@ print('sq1 ⊔ sq2 =', Polyhedron(sq1 | sq2)) # test convex union print() print('check if sq1 and sq2 disjoint:', sq1.isdisjoint(sq2)) #should return false print() -print('sq1 disjoint:', sq1.disjoint()) #make disjoint +print('sq1 disjoint:', sq1.disjoint()) #make disjoint print('sq2 disjoint:', sq2.disjoint()) #make disjoint print() print('is square 1 universe?:', sq1.isuniverse()) #test if square is universe @@ -54,7 +54,7 @@ print() print('lexographic min of sq2:', sq2.lexmin()) #test lexmax() print('lexographic max of sq2:', sq2.lexmax()) #test lexmax() print() -print('Polyhedral hull of sq1 + sq2 is:', x.polyhedral_hull()) #test polyhedral hull, returns same +print('Polyhedral hull of sq1 + sq2 is:', x.polyhedral_hull()) #test polyhedral hull, returns same #value as Polyhedron(sq1 + sq2) print() print('is sq1 bounded?', sq1.isbounded()) #unbounded should return True @@ -62,4 +62,6 @@ print('is sq5 bounded?', sq5.isbounded()) #unbounded should return False print() print('sq6:', sq6) print('sq6 simplified:', sq6.sample()) - +print() +#print(u.drop_dims(' ')) +print('sq7 with out constraints involving y and a', sq7.drop_dims('y a')) #drops dims that are passed