X-Git-Url: https://scm.cri.mines-paristech.fr/git/linpy.git/blobdiff_plain/a8257bb17a1098f69625387a467170cac4b9f483..809c5b59db7b6be224146b8d957453a0f9fb43aa:/examples/nsad2010.py?ds=sidebyside diff --git a/examples/nsad2010.py b/examples/nsad2010.py index 4b73eef..3de2ebd 100755 --- a/examples/nsad2010.py +++ b/examples/nsad2010.py @@ -8,7 +8,7 @@ # to compute the transitive closure of an affine transformer. A refined version # of this algorithm is implemented in PIPS. -from linpy import * +from linpy import Dummy, Eq, Ge, Polyhedron, symbols class Transformer: @@ -28,7 +28,8 @@ class Transformer: delta_symbols = [symbol.asdummy() for symbol in self.range_symbols] k = Dummy('k') polyhedron = self.polyhedron - for x, xprime, dx in zip(self.range_symbols, self.domain_symbols, delta_symbols): + for x, xprime, dx in zip( + self.range_symbols, self.domain_symbols, delta_symbols): polyhedron &= Eq(dx, xprime - x) polyhedron = polyhedron.project(self.symbols) equalities, inequalities = [], [] @@ -40,7 +41,8 @@ class Transformer: inequalities.append(inequality) polyhedron = Polyhedron(equalities, inequalities) & Ge(k, 0) polyhedron = polyhedron.project([k]) - for x, xprime, dx in zip(self.range_symbols, self.domain_symbols, delta_symbols): + for x, xprime, dx in zip( + self.range_symbols, self.domain_symbols, delta_symbols): polyhedron &= Eq(dx, xprime - x) polyhedron = polyhedron.project(delta_symbols) return Transformer(polyhedron, self.range_symbols, self.domain_symbols) @@ -49,6 +51,6 @@ class Transformer: if __name__ == '__main__': i0, i, j0, j = symbols('i0 i j0 j') transformer = Transformer(Eq(i, i0 + 2) & Eq(j, j0 + 1), - [i0, j0], [i, j]) + [i0, j0], [i, j]) print('T =', transformer.polyhedron) print('T* =', transformer.star().polyhedron)