X-Git-Url: https://scm.cri.mines-paristech.fr/git/linpy.git/blobdiff_plain/8332ae24f41a1f2bbba78597cc9e412ef9935ae8..d4b772a5d2f29c4f54564ea09f5b65289cadcaa1:/pypol/polyhedra.py diff --git a/pypol/polyhedra.py b/pypol/polyhedra.py index 69ed2b2..6b5f9ab 100644 --- a/pypol/polyhedra.py +++ b/pypol/polyhedra.py @@ -182,14 +182,27 @@ class Polyhedron(Domain): else: strings = [] for equality in self.equalities: - strings.append('0 == {}'.format(equality)) + strings.append('Eq({}, 0)'.format(equality)) for inequality in self.inequalities: - strings.append('0 <= {}'.format(inequality)) + strings.append('Ge({}, 0)'.format(inequality)) if len(strings) == 1: return strings[0] else: return 'And({})'.format(', '.join(strings)) + def _repr_latex_(self): + if self.isempty(): + return '$\\emptyset$' + elif self.isuniverse(): + return '$\\Omega$' + else: + strings = [] + for equality in self.equalities: + strings.append('{} = 0'.format(equality._repr_latex_().strip('$'))) + for inequality in self.inequalities: + strings.append('{} \\ge 0'.format(inequality._repr_latex_().strip('$'))) + return '${}$'.format(' \\wedge '.join(strings)) + @classmethod def fromsympy(cls, expr): domain = Domain.fromsympy(expr) @@ -311,16 +324,18 @@ class Polyhedron(Domain): def _polymorphic(func): @functools.wraps(func) def wrapper(left, right): - if isinstance(left, numbers.Rational): - left = Rational(left) - elif not isinstance(left, Expression): - raise TypeError('left must be a a rational number ' - 'or a linear expression') - if isinstance(right, numbers.Rational): - right = Rational(right) - elif not isinstance(right, Expression): - raise TypeError('right must be a a rational number ' - 'or a linear expression') + if not isinstance(left, Expression): + if isinstance(left, numbers.Rational): + left = Rational(left) + else: + raise TypeError('left must be a a rational number ' + 'or a linear expression') + if not isinstance(right, Expression): + if isinstance(right, numbers.Rational): + right = Rational(right) + else: + raise TypeError('right must be a a rational number ' + 'or a linear expression') return func(left, right) return wrapper