X-Git-Url: https://scm.cri.mines-paristech.fr/git/linpy.git/blobdiff_plain/51e97eade63b2f4c7b500feb503436cc4a886e59..b02f9551644488e5943f968ac847fe4ed7690d6b:/examples/squares.py?ds=inline diff --git a/examples/squares.py b/examples/squares.py index 1df6e3d..98e2ca8 100755 --- a/examples/squares.py +++ b/examples/squares.py @@ -1,23 +1,8 @@ #!/usr/bin/env python3 -""" - This file is part of Linpy. - - Linpy is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - Linpy is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with Linpy. If not, see . -""" - -from pypol import * +from linpy import * +import matplotlib.pyplot as plt +from matplotlib import pylab a, x, y, z = symbols('a x y z') @@ -30,7 +15,6 @@ sq6 = Le(1, x) & Le(x, 2) & Le(1, y) & Le(y, 3) sq7 = Le(0, x) & Le(x, 2) & Le(0, y) & Eq(z, 2) & Le(a, 3) p = Le(2*x+1, y) & Le(-2*x-1, y) & Le(y, 1) - universe = Polyhedron([]) q = sq1 - sq2 e = Empty @@ -77,21 +61,27 @@ print('lexographic max of sq2:', sq2.lexmax()) #test lexmax() print() print('Polyhedral hull of sq1 + sq2 is:', q.aspolyhedron()) #test polyhedral hull print() -print('is sq1 bounded?', sq1.isbounded()) #unbounded should return True +print('is sq1 bounded?', sq1.isbounded()) #bounded should return True print('is sq5 bounded?', sq5.isbounded()) #unbounded should return False print() print('sq6:', sq6) -print('sq6 simplified:', sq6.sample()) -print() -print(universe.project([x])) -print('sq7 with out constraints involving y and a', sq7.project([a, z, x, y])) #drops dims that are passed +print('sample Polyhedron from sq6:', sq6.sample()) print() -print('sq1 has {} parameters'.format(sq1.num_parameters())) -print() -print('does sq1 constraints involve x?', sq1.involves_dims([x])) +print('sq7 with out constraints involving y and a', sq7.project([a, z, x, y])) print() print('the verticies for s are:', p.vertices()) -print() -print(p.plot()) -# Copyright 2014 MINES ParisTech + +# plotting the intersection of two squares +square1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2) +square2 = Le(1, x) & Le(x, 3) & Le(1, y) & Le(y, 3) + +fig = plt.figure() +plot = fig.add_subplot(1, 1, 1, aspect='equal') +square1.plot(plot, facecolor='red', alpha=0.3) +square2.plot(plot, facecolor='blue', alpha=0.3) + +squares = Polyhedron(square1 + square2) +squares.plot(plot, facecolor='blue', alpha=0.3) + +pylab.show()