X-Git-Url: https://scm.cri.mines-paristech.fr/git/linpy.git/blobdiff_plain/4540f520e6ae625c360c50ea2f4abf07d6811780..4162c0430092e0ba2b8d8d62b5de24cdd71abe3b:/linpy/domains.py diff --git a/linpy/domains.py b/linpy/domains.py index 799b99d..45f55a5 100644 --- a/linpy/domains.py +++ b/linpy/domains.py @@ -24,7 +24,7 @@ from fractions import Fraction from . import islhelper from .islhelper import mainctx, libisl -from .linexprs import LinExpr, Symbol, Rational +from .linexprs import LinExpr, Symbol from .geometry import GeometricObject, Point, Vector @@ -38,7 +38,7 @@ __all__ = [ class Domain(GeometricObject): """ A domain is a union of polyhedra. Unlike polyhedra, domains allow exact - computation of union and complementary operations. + computation of union, subtraction and complementary operations. A domain with a unique polyhedron is automatically subclassed as a Polyhedron instance. @@ -54,22 +54,23 @@ class Domain(GeometricObject): """ Return a domain from a sequence of polyhedra. - >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2') - >>> square2 = Polyhedron('2 <= x <= 4, 2 <= y <= 4') - >>> dom = Domain([square, square2]) + >>> square1 = Polyhedron('0 <= x <= 2, 0 <= y <= 2') + >>> square2 = Polyhedron('1 <= x <= 3, 1 <= y <= 3') + >>> dom = Domain(square1, square2) + >>> dom + Or(And(x <= 2, 0 <= x, y <= 2, 0 <= y), + And(x <= 3, 1 <= x, y <= 3, 1 <= y)) It is also possible to build domains from polyhedra using arithmetic - operators Domain.__and__(), Domain.__or__() or functions And() and Or(), - using one of the following instructions: + operators Domain.__or__(), Domain.__invert__() or functions Or() and + Not(), using one of the following instructions: - >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2') - >>> square2 = Polyhedron('2 <= x <= 4, 2 <= y <= 4') - >>> dom = square | square2 - >>> dom = Or(square, square2) + >>> dom = square1 | square2 + >>> dom = Or(square1, square2) Alternatively, a domain can be built from a string: - >>> dom = Domain('0 <= x <= 2, 0 <= y <= 2; 2 <= x <= 4, 2 <= y <= 4') + >>> dom = Domain('0 <= x <= 2, 0 <= y <= 2; 1 <= x <= 3, 1 <= y <= 3') Finally, a domain can be built from a GeometricObject instance, calling the GeometricObject.asdomain() method. @@ -410,10 +411,10 @@ class Domain(GeometricObject): vertices = islhelper.isl_vertices_vertices(vertices) points = [] for vertex in vertices: - expr = libisl.isl_vertex_get_expr(vertex) + expression = libisl.isl_vertex_get_expr(vertex) coordinates = [] if self._RE_COORDINATE is None: - constraints = islhelper.isl_basic_set_constraints(expr) + constraints = islhelper.isl_basic_set_constraints(expression) for constraint in constraints: constant = libisl.isl_constraint_get_constant_val(constraint) constant = islhelper.isl_val_to_int(constant) @@ -425,7 +426,7 @@ class Domain(GeometricObject): coordinate = -Fraction(constant, coefficient) coordinates.append((symbol, coordinate)) else: - string = islhelper.isl_multi_aff_to_str(expr) + string = islhelper.isl_multi_aff_to_str(expression) matches = self._RE_COORDINATE.finditer(string) for symbol, match in zip(self.symbols, matches): numerator = int(match.group('num')) @@ -703,17 +704,17 @@ class Domain(GeometricObject): Create a domain from a string. Raise SyntaxError if the string is not properly formatted. """ - # remove curly brackets + # Remove curly brackets. string = cls._RE_BRACES.sub(r'', string) - # replace '=' by '==' + # Replace '=' by '=='. string = cls._RE_EQ.sub(r'\1==\2', string) - # replace 'and', 'or', 'not' + # Replace 'and', 'or', 'not'. string = cls._RE_AND.sub(r' & ', string) string = cls._RE_OR.sub(r' | ', string) string = cls._RE_NOT.sub(r' ~', string) - # add implicit multiplication operators, e.g. '5x' -> '5*x' + # Add implicit multiplication operators, e.g. '5x' -> '5*x'. string = cls._RE_NUM_VAR.sub(r'\1*\2', string) - # add parentheses to force precedence + # Add parentheses to force precedence. tokens = cls._RE_OPERATORS.split(string) for i, token in enumerate(tokens): if i % 2 == 0: @@ -728,14 +729,8 @@ class Domain(GeometricObject): strings = [repr(polyhedron) for polyhedron in self.polyhedra] return 'Or({})'.format(', '.join(strings)) - def _repr_latex_(self): - strings = [] - for polyhedron in self.polyhedra: - strings.append('({})'.format(polyhedron._repr_latex_().strip('$'))) - return '${}$'.format(' \\vee '.join(strings)) - @classmethod - def fromsympy(cls, expr): + def fromsympy(cls, expression): """ Create a domain from a SymPy expression. """ @@ -747,12 +742,12 @@ class Domain(GeometricObject): sympy.Eq: Eq, sympy.Ne: Ne, sympy.Ge: Ge, sympy.Gt: Gt, } - if expr.func in funcmap: - args = [Domain.fromsympy(arg) for arg in expr.args] - return funcmap[expr.func](*args) - elif isinstance(expr, sympy.Expr): - return LinExpr.fromsympy(expr) - raise ValueError('non-domain expression: {!r}'.format(expr)) + if expression.func in funcmap: + args = [Domain.fromsympy(arg) for arg in expression.args] + return funcmap[expression.func](*args) + elif isinstance(expression, sympy.Expr): + return LinExpr.fromsympy(expression) + raise ValueError('non-domain expression: {!r}'.format(expression)) def tosympy(self): """