X-Git-Url: https://scm.cri.mines-paristech.fr/git/linpy.git/blobdiff_plain/161d0ced692386a866e55aea673d991e2e95f753..5b661514c1bbabd8205fdbd22a0ba0f6b1ac6305:/pypol/linexprs.py diff --git a/pypol/linexprs.py b/pypol/linexprs.py index f3cff23..c8745b5 100644 --- a/pypol/linexprs.py +++ b/pypol/linexprs.py @@ -3,13 +3,13 @@ import functools import numbers import re -from collections import OrderedDict, defaultdict +from collections import OrderedDict, defaultdict, Mapping from fractions import Fraction, gcd __all__ = [ 'Expression', - 'Symbol', 'symbols', 'Dummy', + 'Symbol', 'Dummy', 'symbols', 'Rational', ] @@ -31,27 +31,25 @@ class Expression: This class implements linear expressions. """ - __slots__ = ( - '_coefficients', - '_constant', - '_symbols', - '_dimension', - ) - def __new__(cls, coefficients=None, constant=0): if isinstance(coefficients, str): - if constant: + if constant != 0: raise TypeError('too many arguments') return Expression.fromstring(coefficients) if coefficients is None: return Rational(constant) - if isinstance(coefficients, dict): + if isinstance(coefficients, Mapping): coefficients = coefficients.items() for symbol, coefficient in coefficients: if not isinstance(symbol, Symbol): raise TypeError('symbols must be Symbol instances') - coefficients = [(symbol, coefficient) + if not isinstance(coefficient, numbers.Rational): + raise TypeError('coefficients must be rational numbers') + coefficients = [(symbol, Fraction(coefficient)) for symbol, coefficient in coefficients if coefficient != 0] + if not isinstance(constant, numbers.Rational): + raise TypeError('constant must be a rational number') + constant = Fraction(constant) if len(coefficients) == 0: return Rational(constant) if len(coefficients) == 1 and constant == 0: @@ -59,20 +57,8 @@ class Expression: if coefficient == 1: return symbol self = object().__new__(cls) - self._coefficients = OrderedDict() - for symbol, coefficient in sorted(coefficients, - key=lambda item: item[0].sortkey()): - if isinstance(coefficient, Rational): - coefficient = coefficient.constant - if not isinstance(coefficient, numbers.Rational): - raise TypeError('coefficients must be rational numbers ' - 'or Rational instances') - self._coefficients[symbol] = coefficient - if isinstance(constant, Rational): - constant = constant.constant - if not isinstance(constant, numbers.Rational): - raise TypeError('constant must be a rational number ' - 'or a Rational instance') + self._coefficients = OrderedDict(sorted(coefficients, + key=lambda item: item[0].sortkey())) self._constant = constant self._symbols = tuple(self._coefficients) self._dimension = len(self._symbols) @@ -82,18 +68,19 @@ class Expression: if not isinstance(symbol, Symbol): raise TypeError('symbol must be a Symbol instance') try: - return self._coefficients[symbol] + return Rational(self._coefficients[symbol]) except KeyError: - return 0 + return Rational(0) __getitem__ = coefficient def coefficients(self): - yield from self._coefficients.items() + for symbol, coefficient in self._coefficients.items(): + yield symbol, Rational(coefficient) @property def constant(self): - return self._constant + return Rational(self._constant) @property def symbols(self): @@ -113,8 +100,9 @@ class Expression: return False def values(self): - yield from self._coefficients.values() - yield self.constant + for coefficient in self._coefficients.values(): + yield Rational(coefficient) + yield Rational(self._constant) def __bool__(self): return True @@ -127,20 +115,20 @@ class Expression: @_polymorphic def __add__(self, other): - coefficients = defaultdict(Rational, self.coefficients()) - for symbol, coefficient in other.coefficients(): + coefficients = defaultdict(Fraction, self._coefficients) + for symbol, coefficient in other._coefficients.items(): coefficients[symbol] += coefficient - constant = self.constant + other.constant + constant = self._constant + other._constant return Expression(coefficients, constant) __radd__ = __add__ @_polymorphic def __sub__(self, other): - coefficients = defaultdict(Rational, self.coefficients()) - for symbol, coefficient in other.coefficients(): + coefficients = defaultdict(Fraction, self._coefficients) + for symbol, coefficient in other._coefficients.items(): coefficients[symbol] -= coefficient - constant = self.constant - other.constant + constant = self._constant - other._constant return Expression(coefficients, constant) def __rsub__(self, other): @@ -148,40 +136,19 @@ class Expression: @_polymorphic def __mul__(self, other): - if other.isconstant(): - coefficients = dict(self.coefficients()) - for symbol in coefficients: - coefficients[symbol] *= other.constant - constant = self.constant * other.constant - return Expression(coefficients, constant) - if isinstance(other, Expression) and not self.isconstant(): - raise ValueError('non-linear expression: ' - '{} * {}'.format(self._parenstr(), other._parenstr())) + if isinstance(other, Rational): + return other.__rmul__(self) return NotImplemented __rmul__ = __mul__ @_polymorphic def __truediv__(self, other): - if other.isconstant(): - coefficients = dict(self.coefficients()) - for symbol in coefficients: - coefficients[symbol] = Rational(coefficients[symbol], other.constant) - constant = Rational(self.constant, other.constant) - return Expression(coefficients, constant) - if isinstance(other, Expression): - raise ValueError('non-linear expression: ' - '{} / {}'.format(self._parenstr(), other._parenstr())) + if isinstance(other, Rational): + return other.__rtruediv__(self) return NotImplemented - def __rtruediv__(self, other): - if isinstance(other, self): - if self.isconstant(): - return Rational(other, self.constant) - else: - raise ValueError('non-linear expression: ' - '{} / {}'.format(other._parenstr(), self._parenstr())) - return NotImplemented + __rtruediv__ = __truediv__ @_polymorphic def __eq__(self, other): @@ -189,7 +156,7 @@ class Expression: # see http://docs.sympy.org/dev/tutorial/gotchas.html#equals-signs return isinstance(other, Expression) and \ self._coefficients == other._coefficients and \ - self.constant == other.constant + self._constant == other._constant @_polymorphic def __le__(self, other): @@ -218,18 +185,20 @@ class Expression: def subs(self, symbol, expression=None): if expression is None: - if isinstance(symbol, dict): + if isinstance(symbol, Mapping): symbol = symbol.items() substitutions = symbol else: substitutions = [(symbol, expression)] result = self for symbol, expression in substitutions: + if not isinstance(symbol, Symbol): + raise TypeError('symbols must be Symbol instances') coefficients = [(othersymbol, coefficient) - for othersymbol, coefficient in result.coefficients() + for othersymbol, coefficient in result._coefficients.items() if othersymbol != symbol] - coefficient = result.coefficient(symbol) - constant = result.constant + coefficient = result._coefficients.get(symbol, 0) + constant = result._constant result = Expression(coefficients, constant) + coefficient*expression return result @@ -269,41 +238,52 @@ class Expression: def __repr__(self): string = '' - i = 0 - for symbol in self.symbols: - coefficient = self.coefficient(symbol) + for i, (symbol, coefficient) in enumerate(self.coefficients()): if coefficient == 1: - if i == 0: - string += symbol.name - else: - string += ' + {}'.format(symbol) + if i != 0: + string += ' + ' elif coefficient == -1: - if i == 0: - string += '-{}'.format(symbol) - else: - string += ' - {}'.format(symbol) + string += '-' if i == 0 else ' - ' + elif i == 0: + string += '{}*'.format(coefficient) + elif coefficient > 0: + string += ' + {}*'.format(coefficient) else: - if i == 0: - string += '{}*{}'.format(coefficient, symbol) - elif coefficient > 0: - string += ' + {}*{}'.format(coefficient, symbol) - else: - assert coefficient < 0 - coefficient *= -1 - string += ' - {}*{}'.format(coefficient, symbol) - i += 1 + string += ' - {}*'.format(-coefficient) + string += '{}'.format(symbol) constant = self.constant - if constant != 0 and i == 0: + if len(string) == 0: string += '{}'.format(constant) elif constant > 0: string += ' + {}'.format(constant) elif constant < 0: - constant *= -1 - string += ' - {}'.format(constant) - if string == '': - string = '0' + string += ' - {}'.format(-constant) return string + def _repr_latex_(self): + string = '' + for i, (symbol, coefficient) in enumerate(self.coefficients()): + if coefficient == 1: + if i != 0: + string += ' + ' + elif coefficient == -1: + string += '-' if i == 0 else ' - ' + elif i == 0: + string += '{}'.format(coefficient._repr_latex_().strip('$')) + elif coefficient > 0: + string += ' + {}'.format(coefficient._repr_latex_().strip('$')) + elif coefficient < 0: + string += ' - {}'.format((-coefficient)._repr_latex_().strip('$')) + string += '{}'.format(symbol._repr_latex_().strip('$')) + constant = self.constant + if len(string) == 0: + string += '{}'.format(constant._repr_latex_().strip('$')) + elif constant > 0: + string += ' + {}'.format(constant._repr_latex_().strip('$')) + elif constant < 0: + string += ' - {}'.format((-constant)._repr_latex_().strip('$')) + return '${}$'.format(string) + def _parenstr(self, always=False): string = str(self) if not always and (self.isconstant() or self.issymbol()): @@ -339,15 +319,15 @@ class Expression: class Symbol(Expression): - __slots__ = ( - '_name', - ) - def __new__(cls, name): if not isinstance(name, str): raise TypeError('name must be a string') self = object().__new__(cls) self._name = name.strip() + self._coefficients = {self: 1} + self._constant = 0 + self._symbols = (self,) + self._dimension = 1 return self @property @@ -357,38 +337,12 @@ class Symbol(Expression): def __hash__(self): return hash(self.sortkey()) - def coefficient(self, symbol): - if not isinstance(symbol, Symbol): - raise TypeError('symbol must be a Symbol instance') - if symbol == self: - return 1 - else: - return 0 - - def coefficients(self): - yield self, 1 - - @property - def constant(self): - return 0 - - @property - def symbols(self): - return self, - - @property - def dimension(self): - return 1 - def sortkey(self): return self.name, def issymbol(self): return True - def values(self): - yield 1 - def __eq__(self, other): return not isinstance(other, Dummy) and isinstance(other, Symbol) \ and self.name == other.name @@ -406,36 +360,35 @@ class Symbol(Expression): return Symbol(node.id) raise SyntaxError('invalid syntax') + def __repr__(self): + return self.name + + def _repr_latex_(self): + return '${}$'.format(self.name) + @classmethod def fromsympy(cls, expr): import sympy if isinstance(expr, sympy.Symbol): - return Symbol(expr.name) + return cls(expr.name) else: raise TypeError('expr must be a sympy.Symbol instance') -def symbols(names): - if isinstance(names, str): - names = names.replace(',', ' ').split() - return tuple(Symbol(name) for name in names) - - class Dummy(Symbol): - __slots__ = ( - '_name', - '_index', - ) - _count = 0 def __new__(cls, name=None): if name is None: name = 'Dummy_{}'.format(Dummy._count) self = object().__new__(cls) - self._name = name.strip() self._index = Dummy._count + self._name = name.strip() + self._coefficients = {self: 1} + self._constant = 0 + self._symbols = (self,) + self._dimension = 1 Dummy._count += 1 return self @@ -448,58 +401,81 @@ class Dummy(Symbol): def __eq__(self, other): return isinstance(other, Dummy) and self._index == other._index + def __repr__(self): + return '_{}'.format(self.name) -class Rational(Expression): + def _repr_latex_(self): + return '${}_{{{}}}$'.format(self.name, self._index) - __slots__ = ( - '_constant', - ) - def __new__(cls, numerator=0, denominator=None): - self = object().__new__(cls) - if denominator is None and isinstance(numerator, Rational): - self._constant = numerator.constant - else: - self._constant = Fraction(numerator, denominator) - return self +def symbols(names): + if isinstance(names, str): + names = names.replace(',', ' ').split() + return tuple(Symbol(name) for name in names) - def __hash__(self): - return hash(self.constant) - def coefficient(self, symbol): - if not isinstance(symbol, Symbol): - raise TypeError('symbol must be a Symbol instance') - return 0 +class Rational(Expression, Fraction): - def coefficients(self): - yield from () + def __new__(cls, numerator=0, denominator=None): + self = Fraction.__new__(cls, numerator, denominator) + self._coefficients = {} + self._constant = Fraction(self) + self._symbols = () + self._dimension = 0 + return self - @property - def symbols(self): - return () + def __hash__(self): + return Fraction.__hash__(self) @property - def dimension(self): - return 0 + def constant(self): + return self def isconstant(self): return True - def values(self): - yield self._constant + def __bool__(self): + return Fraction.__bool__(self) @_polymorphic - def __eq__(self, other): - return isinstance(other, Rational) and self.constant == other.constant + def __mul__(self, other): + coefficients = dict(other._coefficients) + for symbol in coefficients: + coefficients[symbol] *= self._constant + constant = other._constant * self._constant + return Expression(coefficients, constant) - def __bool__(self): - return self.constant != 0 + __rmul__ = __mul__ + + @_polymorphic + def __rtruediv__(self, other): + coefficients = dict(other._coefficients) + for symbol in coefficients: + coefficients[symbol] /= self._constant + constant = other._constant / self._constant + return Expression(coefficients, constant) @classmethod def fromstring(cls, string): if not isinstance(string, str): raise TypeError('string must be a string instance') - return Rational(Fraction(string)) + return Rational(string) + + def __repr__(self): + if self.denominator == 1: + return '{!r}'.format(self.numerator) + else: + return '{!r}/{!r}'.format(self.numerator, self.denominator) + + def _repr_latex_(self): + if self.denominator == 1: + return '${}$'.format(self.numerator) + elif self.numerator < 0: + return '$-\\frac{{{}}}{{{}}}$'.format(-self.numerator, + self.denominator) + else: + return '$\\frac{{{}}}{{{}}}$'.format(self.numerator, + self.denominator) @classmethod def fromsympy(cls, expr):