+# Copyright 2014 MINES ParisTech
+#
+# This file is part of Linpy.
+#
+# Linpy is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# Linpy is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with Linpy. If not, see <http://www.gnu.org/licenses/>.
+
import unittest
-from pypol import *
-#from ..domains import *
-#from ..linexprs import symbols
-#from ..polyhedra import *
+from ..domains import *
+from ..linexprs import Symbol, symbols
+from ..polyhedra import *
class TestDomain(unittest.TestCase):
self.square2 = Polyhedron(inequalities=[x - 1, 3 - x , y - 1, 3 - y]) #correct representation
self.square3 = Polyhedron(inequalities=[x, 3 - x, y, 3 - y])
self.square4 = Polyhedron(inequalities=[x - 1, 2 - x, y - 1, 2 - y])
- self.square5 = Polyhedron(inequalities=[x, 3 - x, y])
- self.square6 = Polyhedron(inequalities=[x - 3, 6 - x, y - 3, 6 -y])
+ self.square5 = Polyhedron(inequalities=[x - 3, 6 - x, y - 3, 6 -y])
+ self.square6 = Polyhedron(equalities=[3 - y], inequalities=[x - 1, 3 - x, y - 1])
+ self.unbound_poly = Polyhedron(inequalities=[x, 3 - x, y])
self.universe = Polyhedron([])
+ self.empty = Empty
self.disjoint = And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0))
- self.compliment = Or(Ge(-x - 1, 0), Ge(x - 3, 0), And(Ge(x, 0), Ge(-x + 2, 0), Ge(-y - 1, 0)), And(Ge(x, 0), Ge(-x + 2, 0), Ge(y - 3, 0)))
+ self.complement = Or(Ge(-x - 1, 0), Ge(x - 3, 0), And(Ge(x, 0), Ge(-x + 2, 0), Ge(-y - 1, 0)), And(Ge(x, 0), Ge(-x + 2, 0), Ge(y - 3, 0)))
self.hull = And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0))
+ self.dropped = And(Ge(y, 0), Ge(-y + 2, 0))
self.intersection = And(Ge(x - 1, 0), Ge(-x + 2, 0), Ge(y - 1, 0), Ge(-y + 2, 0))
self.union = Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0)))
self.sum1 = Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 1, 0), Ge(-x + 3, 0), Ge(y - 1, 0), Ge(-y + 3, 0)))
self.difference2 = And(Ge(x + y - 4, 0), Ge(-x + 3, 0), Ge(-y + 3, 0))
self.lexmin = And(Eq(y, 0), Eq(x, 0))
self.lexmax = And(Eq(y - 2, 0), Eq(x - 2, 0))
-
+
def test_new(self):
with self.assertRaises(TypeError):
- Polyhedron(1)
+ Polyhedron(1)
def test_disjoint(self):
self.assertEqual(self.square1.disjoint(), self.disjoint)
-
+ self.assertEqual(self.empty.disjoint(), Empty)
+ self.assertEqual(self.universe.disjoint(), self.universe)
+
def test_isempty(self):
self.assertFalse(self.square1.isempty())
+ self.assertTrue(self.empty.isempty())
+ self.assertFalse(self.universe.isempty())
def test_isuniverse(self):
self.assertFalse(self.square1.isuniverse())
def test_isbounded(self):
self.assertTrue(self.square1.isbounded())
- self.assertFalse(self.square5.isbounded())
+ self.assertFalse(self.unbound_poly.isbounded())
def test_eq(self):
- self.assertTrue(self.square1.__eq__(self.square1))
- self.assertFalse(self.square1.__eq__(self.square2))
-
+ self.assertTrue(self.square1 == self.square1)
+ self.assertFalse(self.square1 == self.square2)
+ self.assertFalse(self.empty == self.universe)
+
def test_isdisjoint(self):
self.assertFalse(self.square1.isdisjoint(self.square2))
- self.assertTrue(self.square1.isdisjoint(self.square6))
-
+ self.assertFalse(self.universe.isdisjoint(self.square1))
+ self.assertTrue(self.square1.isdisjoint(self.square5))
+ self.assertTrue(self.empty.isdisjoint(self.square1))
+
def test_issubset(self):
- self.assertTrue(self.square4.issubset(self.square5))
+ self.assertTrue(self.square4.issubset(self.unbound_poly))
self.assertFalse(self.square1.issubset(self.square2))
-
+ self.assertTrue(self.square1.issubset(self.universe))
+ self.assertTrue(self.empty.issubset(self.square1))
+
def test_le(self):
- self.assertTrue(self.square4.__lt__(self.square3))
-
+ self.assertTrue(self.square4 <= self.square3)
+ self.assertFalse(self.square3 <= self.square4)
+ self.assertTrue(self.empty <= self.square1)
+ self.assertTrue(self.square1 <= self.universe)
+
def test_lt(self):
- self.assertTrue(self.square4.__le__(self.square3))
-
- def test_compliment(self):
- self.assertEqual(~self.square1, self.compliment)
-
- def test_simplify(self):
- #maybe wont need this method
- pass
-
- def test_polyhedral_hull(self):
- self.assertEqual(self.square1.polyhedral_hull(), self.hull)
-
+ self.assertTrue(self.square4 < self.square3)
+ self.assertFalse(self.square3 < self.square4)
+ self.assertTrue(self.empty < self.square1)
+ self.assertTrue(self.square1 < self.universe)
+
+ def test_complement(self):
+ self.assertEqual(~self.square1, self.complement)
+ self.assertEqual(~self.universe, Empty)
+ self.assertEqual(~self.empty, self.universe)
+
+ def test_aspolyhedron(self):
+ self.assertEqual(self.square1.aspolyhedron(), self.hull)
+ self.assertEqual(self.universe.aspolyhedron(), self.universe)
+ self.assertEqual(self.empty.aspolyhedron(), self.empty)
+
def test_project(self):
- #maybe wont need this method
- pass
-
+ self.assertEqual(self.square1.project(symbols('x')), self.dropped)
+ self.assertEqual(self.square1.project(symbols('x y')), self.universe)
+ self.assertEqual(self.universe.project([]), self.universe)
+ self.assertEqual(self.empty.project([]), Empty)
+
+ def test_simplify(self):
+ self.assertEqual(self.universe.simplify(), self.universe)
+ self.assertEqual(self.empty.simplify(), Empty)
+
def test_sample(self):
- pass
-
+ self.assertEqual(self.square6.sample(), {Symbol('x'): 1, Symbol('y'): 3})
+ with self.assertRaises(ValueError):
+ self.empty.sample()
+ self.assertEqual(self.universe.sample(), {})
+
def test_intersection(self):
self.assertEqual(self.square1.intersection(self.square2), self.intersection)
-
+
def test_and(self):
- self.assertEqual(self.square2 & self.square1, self.intersection)
-
+ self.assertEqual(self.square2 & self.square1, self.intersection)
+ self.assertEqual(self.square1 & self.universe, self.square1)
+ self.assertEqual(self.empty & self.square1, Empty)
+ self.assertEqual(self.universe & self.universe, self.universe)
+ self.assertEqual(self.universe & self.empty, Empty)
+ self.assertEqual(self.empty & self.empty, Empty)
+
def test_union(self):
self.assertEqual(self.square1.union(self.square2), self.union)
-
+ self.assertEqual(self.square1.union(self.empty), self.square1)
+ self.assertEqual(self.square1.union(self.universe), self.universe)
+ self.assertEqual(self.universe.union(self.universe), self.universe)
+ self.assertEqual(self.empty.union(self.empty), self.empty)
+
def test_or(self):
- self.assertEqual(self.square1.__or__(self.square2), self.union)
-
+ self.assertEqual(self.square1 | self.square2, self.union)
+
def test_add(self):
- self.assertEqual(self.square2.__add__(self.square1), self.sum1)
+ self.assertEqual(self.square2 + self.square1, self.sum1)
self.assertEqual(Polyhedron(self.square1 + self.square2), self.sum2)
-
+ self.assertEqual(self.universe + self.square1, self.universe)
+ self.assertEqual(self.empty + self.square1, self.square1)
+ self.assertEqual(self.universe + self.universe, self.universe)
+
def test_difference(self):
self.assertEqual(self.square2 - self.square1, self.difference1)
self.assertEqual(Polyhedron(self.square2 - self.square1), self.difference2)
-
+ self.assertEqual(self.square2 - self.square2, Empty)
+ self.assertEqual(self.universe - self.universe, Empty)
+
def test_lexmin(self):
self.assertEqual(self.square1.lexmin(), self.lexmin)
+ self.assertEqual(self.universe.lexmin(), self.universe)
+ self.assertEqual(self.empty.lexmin(), Empty)
def test_lexmax(self):
self.assertEqual(self.square1.lexmax(), self.lexmax)
-
-
-
- pass
+ self.assertEqual(self.universe.lexmax(), self.universe)
+ self.assertEqual(self.empty.lexmax(), Empty)
+ def test_involves_vars(self):
+ self.assertTrue(self.square1.involves_vars(symbols('x y')))
+ self.assertFalse(self.empty.involves_vars(symbols('x')))
+ self.assertFalse(self.universe.involves_vars(symbols('x')))