Better implementation of NSAD'10 example
[linpy.git] / pypol / polyhedra.py
index 44826c1..6b44bdc 100644 (file)
@@ -4,7 +4,7 @@ import numbers
 from . import islhelper
 
 from .islhelper import mainctx, libisl
-from .linexprs import Expression, Constant
+from .linexprs import Expression, Rational
 from .domains import Domain
 
 
@@ -44,14 +44,14 @@ class Polyhedron(Domain):
             for i, equality in enumerate(equalities):
                 if not isinstance(equality, Expression):
                     raise TypeError('equalities must be linear expressions')
-                equalities[i] = equality._toint()
+                equalities[i] = equality.scaleint()
         if inequalities is None:
             inequalities = []
         else:
             for i, inequality in enumerate(inequalities):
                 if not isinstance(inequality, Expression):
                     raise TypeError('inequalities must be linear expressions')
-                inequalities[i] = inequality._toint()
+                inequalities[i] = inequality.scaleint()
         symbols = cls._xsymbols(equalities + inequalities)
         islbset = cls._toislbasicset(equalities, inequalities, symbols)
         return cls._fromislbasicset(islbset, symbols)
@@ -91,12 +91,12 @@ class Polyhedron(Domain):
         equalities = []
         inequalities = []
         for islconstraint in islconstraints:
-            islpr = libisl.isl_printer_to_str(mainctx)
             constant = libisl.isl_constraint_get_constant_val(islconstraint)
             constant = islhelper.isl_val_to_int(constant)
             coefficients = {}
             for index, symbol in enumerate(symbols):
-                coefficient = libisl.isl_constraint_get_coefficient_val(islconstraint, libisl.isl_dim_set, index)
+                coefficient = libisl.isl_constraint_get_coefficient_val(islconstraint,
+                    libisl.isl_dim_set, index)
                 coefficient = islhelper.isl_val_to_int(coefficient)
                 if coefficient != 0:
                     coefficients[symbol] = coefficient
@@ -172,38 +172,12 @@ class Polyhedron(Domain):
             else:
                 return 'And({})'.format(', '.join(strings))
 
-    @classmethod
-    def _fromsympy(cls, expr):
-        import sympy
-        equalities = []
-        inequalities = []
-        if expr.func == sympy.And:
-            for arg in expr.args:
-                arg_eqs, arg_ins = cls._fromsympy(arg)
-                equalities.extend(arg_eqs)
-                inequalities.extend(arg_ins)
-        elif expr.func == sympy.Eq:
-            expr = Expression.fromsympy(expr.args[0] - expr.args[1])
-            equalities.append(expr)
-        else:
-            if expr.func == sympy.Lt:
-                expr = Expression.fromsympy(expr.args[1] - expr.args[0] - 1)
-            elif expr.func == sympy.Le:
-                expr = Expression.fromsympy(expr.args[1] - expr.args[0])
-            elif expr.func == sympy.Ge:
-                expr = Expression.fromsympy(expr.args[0] - expr.args[1])
-            elif expr.func == sympy.Gt:
-                expr = Expression.fromsympy(expr.args[0] - expr.args[1] - 1)
-            else:
-                raise ValueError('non-polyhedral expression: {!r}'.format(expr))
-            inequalities.append(expr)
-        return equalities, inequalities
-
     @classmethod
     def fromsympy(cls, expr):
-        import sympy
-        equalities, inequalities = cls._fromsympy(expr)
-        return cls(equalities, inequalities)
+        domain = Domain.fromsympy(expr)
+        if not isinstance(domain, Polyhedron):
+            raise ValueError('non-polyhedral expression: {!r}'.format(expr))
+        return domain
 
     def tosympy(self):
         import sympy
@@ -219,12 +193,12 @@ def _polymorphic(func):
     @functools.wraps(func)
     def wrapper(left, right):
         if isinstance(left, numbers.Rational):
-            left = Constant(left)
+            left = Rational(left)
         elif not isinstance(left, Expression):
             raise TypeError('left must be a a rational number '
                 'or a linear expression')
         if isinstance(right, numbers.Rational):
-            right = Constant(right)
+            right = Rational(right)
         elif not isinstance(right, Expression):
             raise TypeError('right must be a a rational number '
                 'or a linear expression')