Implementation of Symbol.sortkey()
[linpy.git] / pypol / domains.py
index 6b47fe8..224ac5f 100644 (file)
@@ -50,7 +50,7 @@ class Domain:
         symbols = set()
         for item in iterator:
             symbols.update(item.symbols)
-        return tuple(sorted(symbols))
+        return tuple(sorted(symbols, key=Symbol.sortkey))
 
     @property
     def polyhedra(self):
@@ -154,21 +154,16 @@ class Domain:
 
     def project_out(self, symbols):
         # use to remove certain variables
-        if isinstance(symbols, str):
-            symbols = symbols.replace(',', ' ').split()
-        else:
-            symbols = list(symbols)
-            for i, symbol in enumerate(symbols):
-                if isinstance(symbol, Symbol):
-                    symbols[i] = symbol.name
-                elif not isinstance(symbol, str):
-                    raise TypeError('symbols must be strings or Symbol instances')
         islset = self._toislset(self.polyhedra, self.symbols)
-        # the trick is to walk symbols in reverse order, to avoid index updates
+        n = 0
         for index, symbol in reversed(list(enumerate(self.symbols))):
             if symbol in symbols:
-                islset = libisl.isl_set_project_out(islset, libisl.isl_dim_set, index, 1)
-        # remaining symbols
+                n += 1
+            elif n > 0:
+                islset = libisl.isl_set_project_out(islset, libisl.isl_dim_set, index + 1, n)
+                n = 0
+        if n > 0:
+            islset = libisl.isl_set_project_out(islset, libisl.isl_dim_set, 0, n)
         symbols = [symbol for symbol in self.symbols if symbol not in symbols]
         return Domain._fromislset(islset, symbols)
 
@@ -340,10 +335,26 @@ class Domain:
 
     @classmethod
     def fromsympy(cls, expr):
-        raise NotImplementedError
+        import sympy
+        from .polyhedra import Lt, Le, Eq, Ne, Ge, Gt
+        funcmap = {
+            sympy.And: And, sympy.Or: Or, sympy.Not: Not,
+            sympy.Lt: Lt, sympy.Le: Le,
+            sympy.Eq: Eq, sympy.Ne: Ne,
+            sympy.Ge: Ge, sympy.Gt: Gt,
+        }
+        if expr.func in funcmap:
+            args = [Domain.fromsympy(arg) for arg in expr.args]
+            return funcmap[expr.func](*args)
+        elif isinstance(expr, sympy.Expr):
+            return Expression.fromsympy(expr)
+        raise ValueError('non-domain expression: {!r}'.format(expr))
 
     def tosympy(self):
-        raise NotImplementedError
+        import sympy
+        polyhedra = [polyhedron.tosympy() for polyhedron in polyhedra]
+        return sympy.Or(*polyhedra)
+
 
 def And(*domains):
     if len(domains) == 0: