from . import islhelper
from .islhelper import mainctx, libisl, isl_set_basic_sets
-from .linexprs import Expression
+from .linexprs import Expression, Symbol
__all__ = [
symbols = set()
for item in iterator:
symbols.update(item.symbols)
- return tuple(sorted(symbols))
+ return tuple(sorted(symbols, key=Symbol.sortkey))
@property
def polyhedra(self):
def simplify(self):
#does not change anything in any of the examples
- #isl seems to do this naturally
+ #isl seems to do this naturally
islset = self._toislset(self.polyhedra, self.symbols)
islset = libisl.isl_set_remove_redundancies(islset)
return self._fromislset(islset, self.symbols)
islbset = libisl.isl_set_polyhedral_hull(islset)
return Polyhedron._fromislbasicset(islbset, self.symbols)
- def drop_dims(self, dims):
- # use to remove certain variables use isl_set_drop_constraints_involving_dims instead?
- from .polyhedra import Polyhedron
- dims = list(dims)
- symbols = list(self.symbols)
+ def project_out(self, symbols):
+ # use to remove certain variables
islset = self._toislset(self.polyhedra, self.symbols)
- for dim in dims:
- if dim in symbols:
- num = symbols.index(dim)
- islbset = libisl.isl_set_drop_constraints_involving_dims(islset, libisl.isl_dim_set, num, 1)
- return Polyhedron._fromislset(islbset, self.symbols)
-
+ n = 0
+ for index, symbol in reversed(list(enumerate(self.symbols))):
+ if symbol in symbols:
+ n += 1
+ elif n > 0:
+ islset = libisl.isl_set_project_out(islset, libisl.isl_dim_set, index + 1, n)
+ n = 0
+ if n > 0:
+ islset = libisl.isl_set_project_out(islset, libisl.isl_dim_set, 0, n)
+ symbols = [symbol for symbol in self.symbols if symbol not in symbols]
+ return Domain._fromislset(islset, symbols)
+
def sample(self):
from .polyhedra import Polyhedron
islset = self._toislset(self.polyhedra, self.symbols)
@classmethod
def fromsympy(cls, expr):
- raise NotImplementedError
+ import sympy
+ from .polyhedra import Lt, Le, Eq, Ne, Ge, Gt
+ funcmap = {
+ sympy.And: And, sympy.Or: Or, sympy.Not: Not,
+ sympy.Lt: Lt, sympy.Le: Le,
+ sympy.Eq: Eq, sympy.Ne: Ne,
+ sympy.Ge: Ge, sympy.Gt: Gt,
+ }
+ if expr.func in funcmap:
+ args = [Domain.fromsympy(arg) for arg in expr.args]
+ return funcmap[expr.func](*args)
+ elif isinstance(expr, sympy.Expr):
+ return Expression.fromsympy(expr)
+ raise ValueError('non-domain expression: {!r}'.format(expr))
def tosympy(self):
- raise NotImplementedError
+ import sympy
+ polyhedra = [polyhedron.tosympy() for polyhedron in polyhedra]
+ return sympy.Or(*polyhedra)
+
def And(*domains):
if len(domains) == 0: