__slots__ = (
'_equalities',
'_inequalities',
- '_constraints',
'_symbols',
'_dimension',
)
if inequalities is not None:
raise TypeError('too many arguments')
return equalities.aspolyhedron()
- if equalities is None:
- equalities = []
- else:
- for i, equality in enumerate(equalities):
+ sc_equalities = []
+ if equalities is not None:
+ for equality in equalities:
if not isinstance(equality, LinExpr):
raise TypeError('equalities must be linear expressions')
- equalities[i] = equality.scaleint()
- if inequalities is None:
- inequalities = []
- else:
- for i, inequality in enumerate(inequalities):
+ sc_equalities.append(equality.scaleint())
+ sc_inequalities = []
+ if inequalities is not None:
+ for inequality in inequalities:
if not isinstance(inequality, LinExpr):
raise TypeError('inequalities must be linear expressions')
- inequalities[i] = inequality.scaleint()
- symbols = cls._xsymbols(equalities + inequalities)
- islbset = cls._toislbasicset(equalities, inequalities, symbols)
+ sc_inequalities.append(inequality.scaleint())
+ symbols = cls._xsymbols(sc_equalities + sc_inequalities)
+ islbset = cls._toislbasicset(sc_equalities, sc_inequalities, symbols)
return cls._fromislbasicset(islbset, symbols)
@property
The tuple of constraints, i.e., equalities and inequalities. This is
semantically equivalent to: equalities + inequalities.
"""
- return self._constraints
+ return self._equalities + self._inequalities
@property
def polyhedra(self):
def aspolyhedron(self):
return self
+ def convex_union(self, *others):
+ """
+ Return the convex union of two or more polyhedra.
+ """
+ for other in others:
+ if not isinstance(other, Polyhedron):
+ raise TypeError('arguments must be Polyhedron instances')
+ return Polyhedron(self.union(*others))
+
def __contains__(self, point):
if not isinstance(point, Point):
raise TypeError('point must be a Point instance')
for inequality in self.inequalities]
return Polyhedron(equalities, inequalities)
- def _asinequalities(self):
+ def asinequalities(self):
+ """
+ Express the polyhedron using inequalities, given as a list of
+ expressions greater or equal to 0.
+ """
inequalities = list(self.equalities)
inequalities.extend([-expression for expression in self.equalities])
inequalities.extend(self.inequalities)
def widen(self, other):
"""
Compute the standard widening of two polyhedra, à la Halbwachs.
+
+ In its current implementation, this method is slow and should not be
+ used on large polyhedra.
"""
if not isinstance(other, Polyhedron):
- raise ValueError('argument must be a Polyhedron instance')
- inequalities1 = self._asinequalities()
- inequalities2 = other._asinequalities()
+ raise TypeError('argument must be a Polyhedron instance')
+ inequalities1 = self.asinequalities()
+ inequalities2 = other.asinequalities()
inequalities = []
for inequality1 in inequalities1:
if other <= Polyhedron(inequalities=[inequality1]):
self = object().__new__(Polyhedron)
self._equalities = tuple(equalities)
self._inequalities = tuple(inequalities)
- self._constraints = tuple(equalities + inequalities)
- self._symbols = cls._xsymbols(self._constraints)
+ self._symbols = cls._xsymbols(self.constraints)
self._dimension = len(self._symbols)
return self
def __repr__(self):
strings = []
for equality in self.equalities:
- strings.append('Eq({}, 0)'.format(equality))
+ left, right, swap = 0, 0, False
+ for i, (symbol, coefficient) in enumerate(equality.coefficients()):
+ if coefficient > 0:
+ left += coefficient * symbol
+ else:
+ right -= coefficient * symbol
+ if i == 0:
+ swap = True
+ if equality.constant > 0:
+ left += equality.constant
+ else:
+ right -= equality.constant
+ if swap:
+ left, right = right, left
+ strings.append('{} == {}'.format(left, right))
for inequality in self.inequalities:
- strings.append('Ge({}, 0)'.format(inequality))
+ left, right = 0, 0
+ for symbol, coefficient in inequality.coefficients():
+ if coefficient < 0:
+ left -= coefficient * symbol
+ else:
+ right += coefficient * symbol
+ if inequality.constant < 0:
+ left -= inequality.constant
+ else:
+ right += inequality.constant
+ strings.append('{} <= {}'.format(left, right))
if len(strings) == 1:
return strings[0]
else:
The empty polyhedron, whose set of constraints is not satisfiable.
"""
- __slots__ = Polyhedron.__slots__
-
def __new__(cls):
self = object().__new__(cls)
self._equalities = (Rational(1),)
self._inequalities = ()
- self._constraints = self._equalities
self._symbols = ()
self._dimension = 0
return self
i.e. is empty.
"""
- __slots__ = Polyhedron.__slots__
-
def __new__(cls):
self = object().__new__(cls)
self._equalities = ()
self._inequalities = ()
- self._constraints = ()
self._symbols = ()
self._dimension = ()
return self
Universe = UniverseType()
-def _polymorphic(func):
+def _pseudoconstructor(func):
@functools.wraps(func)
- def wrapper(left, right):
- if not isinstance(left, LinExpr):
- if isinstance(left, numbers.Rational):
- left = Rational(left)
- else:
- raise TypeError('left must be a a rational number '
- 'or a linear expression')
- if not isinstance(right, LinExpr):
- if isinstance(right, numbers.Rational):
- right = Rational(right)
- else:
- raise TypeError('right must be a a rational number '
- 'or a linear expression')
- return func(left, right)
+ def wrapper(expr1, expr2, *exprs):
+ exprs = (expr1, expr2) + exprs
+ for expr in exprs:
+ if not isinstance(expr, LinExpr):
+ if isinstance(expr, numbers.Rational):
+ expr = Rational(expr)
+ else:
+ raise TypeError('arguments must be rational numbers '
+ 'or linear expressions')
+ return func(*exprs)
return wrapper
-@_polymorphic
-def Lt(left, right):
+@_pseudoconstructor
+def Lt(*exprs):
"""
Create the polyhedron with constraints expr1 < expr2 < expr3 ...
"""
- return Polyhedron([], [right - left - 1])
+ inequalities = []
+ for left, right in zip(exprs, exprs[1:]):
+ inequalities.append(right - left - 1)
+ return Polyhedron([], inequalities)
-@_polymorphic
-def Le(left, right):
+@_pseudoconstructor
+def Le(*exprs):
"""
Create the polyhedron with constraints expr1 <= expr2 <= expr3 ...
"""
- return Polyhedron([], [right - left])
+ inequalities = []
+ for left, right in zip(exprs, exprs[1:]):
+ inequalities.append(right - left)
+ return Polyhedron([], inequalities)
-@_polymorphic
-def Eq(left, right):
+@_pseudoconstructor
+def Eq(*exprs):
"""
Create the polyhedron with constraints expr1 == expr2 == expr3 ...
"""
- return Polyhedron([left - right], [])
+ equalities = []
+ for left, right in zip(exprs, exprs[1:]):
+ equalities.append(left - right)
+ return Polyhedron(equalities, [])
-@_polymorphic
-def Ne(left, right):
+@_pseudoconstructor
+def Ne(*exprs):
"""
Create the domain such that expr1 != expr2 != expr3 ... The result is a
- Domain, not a Polyhedron.
+ Domain object, not a Polyhedron.
"""
- return ~Eq(left, right)
+ domain = Universe
+ for left, right in zip(exprs, exprs[1:]):
+ domain &= ~Eq(left, right)
+ return domain
-@_polymorphic
-def Gt(left, right):
+@_pseudoconstructor
+def Ge(*exprs):
"""
- Create the polyhedron with constraints expr1 > expr2 > expr3 ...
+ Create the polyhedron with constraints expr1 >= expr2 >= expr3 ...
"""
- return Polyhedron([], [left - right - 1])
+ inequalities = []
+ for left, right in zip(exprs, exprs[1:]):
+ inequalities.append(left - right)
+ return Polyhedron([], inequalities)
-@_polymorphic
-def Ge(left, right):
+@_pseudoconstructor
+def Gt(*exprs):
"""
- Create the polyhedron with constraints expr1 >= expr2 >= expr3 ...
+ Create the polyhedron with constraints expr1 > expr2 > expr3 ...
"""
- return Polyhedron([], [left - right])
+ inequalities = []
+ for left, right in zip(exprs, exprs[1:]):
+ inequalities.append(left - right - 1)
+ return Polyhedron([], inequalities)