def __repr__(self):
strings = []
for equality in self.equalities:
- strings.append('Eq({}, 0)'.format(equality))
+ left, right, swap = 0, 0, False
+ for i, (symbol, coefficient) in enumerate(equality.coefficients()):
+ if coefficient > 0:
+ left += coefficient * symbol
+ else:
+ right -= coefficient * symbol
+ if i == 0:
+ swap = True
+ if equality.constant > 0:
+ left += equality.constant
+ else:
+ right -= equality.constant
+ if swap:
+ left, right = right, left
+ strings.append('{} == {}'.format(left, right))
for inequality in self.inequalities:
- strings.append('Ge({}, 0)'.format(inequality))
+ left, right = 0, 0
+ for symbol, coefficient in inequality.coefficients():
+ if coefficient < 0:
+ left -= coefficient * symbol
+ else:
+ right += coefficient * symbol
+ if inequality.constant < 0:
+ left -= inequality.constant
+ else:
+ right += inequality.constant
+ strings.append('{} <= {}'.format(left, right))
if len(strings) == 1:
return strings[0]
else:
Universe = UniverseType()
-def _polymorphic(func):
+def _pseudoconstructor(func):
@functools.wraps(func)
- def wrapper(left, right):
- if not isinstance(left, LinExpr):
- if isinstance(left, numbers.Rational):
- left = Rational(left)
- else:
- raise TypeError('left must be a a rational number '
- 'or a linear expression')
- if not isinstance(right, LinExpr):
- if isinstance(right, numbers.Rational):
- right = Rational(right)
- else:
- raise TypeError('right must be a a rational number '
- 'or a linear expression')
- return func(left, right)
+ def wrapper(expr1, expr2, *exprs):
+ exprs = (expr1, expr2) + exprs
+ for expr in exprs:
+ if not isinstance(expr, LinExpr):
+ if isinstance(expr, numbers.Rational):
+ expr = Rational(expr)
+ else:
+ raise TypeError('arguments must be rational numbers '
+ 'or linear expressions')
+ return func(*exprs)
return wrapper
-@_polymorphic
-def Lt(left, right):
+@_pseudoconstructor
+def Lt(*exprs):
"""
Create the polyhedron with constraints expr1 < expr2 < expr3 ...
"""
- return Polyhedron([], [right - left - 1])
+ inequalities = []
+ for left, right in zip(exprs, exprs[1:]):
+ inequalities.append(right - left - 1)
+ return Polyhedron([], inequalities)
-@_polymorphic
-def Le(left, right):
+@_pseudoconstructor
+def Le(*exprs):
"""
Create the polyhedron with constraints expr1 <= expr2 <= expr3 ...
"""
- return Polyhedron([], [right - left])
+ inequalities = []
+ for left, right in zip(exprs, exprs[1:]):
+ inequalities.append(right - left)
+ return Polyhedron([], inequalities)
-@_polymorphic
-def Eq(left, right):
+@_pseudoconstructor
+def Eq(*exprs):
"""
Create the polyhedron with constraints expr1 == expr2 == expr3 ...
"""
- return Polyhedron([left - right], [])
+ equalities = []
+ for left, right in zip(exprs, exprs[1:]):
+ equalities.append(left - right)
+ return Polyhedron(equalities, [])
-@_polymorphic
-def Ne(left, right):
+@_pseudoconstructor
+def Ne(*exprs):
"""
Create the domain such that expr1 != expr2 != expr3 ... The result is a
- Domain, not a Polyhedron.
+ Domain object, not a Polyhedron.
"""
- return ~Eq(left, right)
+ domain = Universe
+ for left, right in zip(exprs, exprs[1:]):
+ domain &= ~Eq(left, right)
+ return domain
-@_polymorphic
-def Ge(left, right):
+@_pseudoconstructor
+def Ge(*exprs):
"""
Create the polyhedron with constraints expr1 >= expr2 >= expr3 ...
"""
- return Polyhedron([], [left - right])
+ inequalities = []
+ for left, right in zip(exprs, exprs[1:]):
+ inequalities.append(left - right)
+ return Polyhedron([], inequalities)
-@_polymorphic
-def Gt(left, right):
+@_pseudoconstructor
+def Gt(*exprs):
"""
Create the polyhedron with constraints expr1 > expr2 > expr3 ...
"""
- return Polyhedron([], [left - right - 1])
+ inequalities = []
+ for left, right in zip(exprs, exprs[1:]):
+ inequalities.append(left - right - 1)
+ return Polyhedron([], inequalities)