+# Copyright 2014 MINES ParisTech
+#
+# This file is part of Linpy.
+#
+# Linpy is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# Linpy is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with Linpy. If not, see <http://www.gnu.org/licenses/>.
+
import functools
import math
import numbers
@property
def equalities(self):
+ """
+ Return a list of the equalities in a set.
+ """
return self._equalities
@property
def inequalities(self):
+ """
+ Return a list of the inequalities in a set.
+ """
return self._inequalities
@property
def constraints(self):
+ """
+ Return ta list of the constraints of a set.
+ """
return self._constraints
@property
def disjoint(self):
"""
- Return this set as disjoint.
+ Return a set as disjoint.
"""
return self
def isuniverse(self):
"""
- Return true if this set is the Universe set.
+ Return true if a set is the Universe set.
"""
islbset = self._toislbasicset(self.equalities, self.inequalities,
self.symbols)
def aspolyhedron(self):
"""
- Return polyhedral hull of this set.
+ Return polyhedral hull of a set.
"""
return self
return True
def subs(self, symbol, expression=None):
+ """
+ Subsitute the given value into an expression and return the resulting
+ expression.
+ """
equalities = [equality.subs(symbol, expression)
for equality in self.equalities]
inequalities = [inequality.subs(symbol, expression)
@classmethod
def _fromislbasicset(cls, islbset, symbols):
- if libisl.isl_basic_set_is_empty(islbset):
- return Empty
- if libisl.isl_basic_set_is_universe(islbset):
- return Universe
islconstraints = islhelper.isl_basic_set_constraints(islbset)
equalities = []
inequalities = []
else:
return 'And({})'.format(', '.join(strings))
+
def _repr_latex_(self):
strings = []
for equality in self.equalities:
@classmethod
def fromsympy(cls, expr):
+ """
+ Convert a sympy object to an expression.
+ """
domain = Domain.fromsympy(expr)
if not isinstance(domain, Polyhedron):
raise ValueError('non-polyhedral expression: {!r}'.format(expr))
return domain
def tosympy(self):
+ """
+ Return an expression as a sympy object.
+ """
import sympy
constraints = []
for equality in self.equalities:
constraints.append(sympy.Ge(inequality.tosympy(), 0))
return sympy.And(*constraints)
-
class EmptyType(Polyhedron):
__slots__ = Polyhedron.__slots__
@_polymorphic
def Lt(left, right):
"""
- Return true if the first set is less than the second.
+ Assert first set is less than the second set.
"""
return Polyhedron([], [right - left - 1])
@_polymorphic
def Le(left, right):
"""
- Return true the first set is less than or equal to the second.
+ Assert first set is less than or equal to the second set.
"""
return Polyhedron([], [right - left])
@_polymorphic
def Eq(left, right):
"""
- Return true if the sets are equal.
+ Assert first set is equal to the second set.
"""
return Polyhedron([left - right], [])
@_polymorphic
def Ne(left, right):
"""
- Return true if the sets are NOT equal.
+ Assert first set is not equal to the second set.
"""
return ~Eq(left, right)
@_polymorphic
def Gt(left, right):
"""
- Return true if the first set is greater than the second set.
+ Assert first set is greater than the second set.
"""
return Polyhedron([], [left - right - 1])
@_polymorphic
def Ge(left, right):
"""
- Return true if the first set is greater than or equal the second set.
+ Assert first set is greater than or equal to the second set.
"""
return Polyhedron([], [left - right])