Remove slot Polyhedron._constraints
[linpy.git] / linpy / polyhedra.py
index 8eddb2d..543e673 100644 (file)
@@ -23,7 +23,7 @@ from . import islhelper
 
 from .islhelper import mainctx, libisl
 from .geometry import GeometricObject, Point
-from .linexprs import Expression, Rational
+from .linexprs import LinExpr, Rational
 from .domains import Domain
 
 
@@ -36,21 +36,49 @@ __all__ = [
 
 class Polyhedron(Domain):
     """
-    Polyhedron class allows users to build and inspect polyherons. Polyhedron inherits from Domain.
+    A convex polyhedron (or simply "polyhedron") is the space defined by a
+    system of linear equalities and inequalities. This space can be
+    unbounded.
     """
+
     __slots__ = (
         '_equalities',
         '_inequalities',
-        '_constraints',
         '_symbols',
         '_dimension',
     )
 
     def __new__(cls, equalities=None, inequalities=None):
         """
-        Create and return a new Polyhedron from a string or list of equalities and inequalities.
+        Return a polyhedron from two sequences of linear expressions: equalities
+        is a list of expressions equal to 0, and inequalities is a list of
+        expressions greater or equal to 0. For example, the polyhedron
+        0 <= x <= 2, 0 <= y <= 2 can be constructed with:
+
+        >>> x, y = symbols('x y')
+        >>> square = Polyhedron([], [x, 2 - x, y, 2 - y])
+
+        It may be easier to use comparison operators LinExpr.__lt__(),
+        LinExpr.__le__(), LinExpr.__ge__(), LinExpr.__gt__(), or functions Lt(),
+        Le(), Eq(), Ge() and Gt(), using one of the following instructions:
+
+        >>> x, y = symbols('x y')
+        >>> square = (0 <= x) & (x <= 2) & (0 <= y) & (y <= 2)
+        >>> square = Le(0, x, 2) & Le(0, y, 2)
+
+        It is also possible to build a polyhedron from a string.
+
+        >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
+
+        Finally, a polyhedron can be constructed from a GeometricObject
+        instance, calling the GeometricObject.aspolyedron() method. This way, it
+        is possible to compute the polyhedral hull of a Domain instance, i.e.,
+        the convex hull of two polyhedra:
+
+        >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
+        >>> square2 = Polyhedron('2 <= x <= 4, 2 <= y <= 4')
+        >>> Polyhedron(square | square2)
         """
-        
         if isinstance(equalities, str):
             if inequalities is not None:
                 raise TypeError('too many arguments')
@@ -63,14 +91,14 @@ class Polyhedron(Domain):
             equalities = []
         else:
             for i, equality in enumerate(equalities):
-                if not isinstance(equality, Expression):
+                if not isinstance(equality, LinExpr):
                     raise TypeError('equalities must be linear expressions')
                 equalities[i] = equality.scaleint()
         if inequalities is None:
             inequalities = []
         else:
             for i, inequality in enumerate(inequalities):
-                if not isinstance(inequality, Expression):
+                if not isinstance(inequality, LinExpr):
                     raise TypeError('inequalities must be linear expressions')
                 inequalities[i] = inequality.scaleint()
         symbols = cls._xsymbols(equalities + inequalities)
@@ -80,38 +108,35 @@ class Polyhedron(Domain):
     @property
     def equalities(self):
         """
-        Return a list of the equalities in a polyhedron.
+        The tuple of equalities. This is a list of LinExpr instances that are
+        equal to 0 in the polyhedron.
         """
         return self._equalities
 
     @property
     def inequalities(self):
         """
-        Return a list of the inequalities in a polyhedron.
+        The tuple of inequalities. This is a list of LinExpr instances that are
+        greater or equal to 0 in the polyhedron.
         """
         return self._inequalities
 
     @property
     def constraints(self):
         """
-        Return the list of the constraints of a polyhedron.
+        The tuple of constraints, i.e., equalities and inequalities. This is
+        semantically equivalent to: equalities + inequalities.
         """
-        return self._constraints
+        return self._equalities + self._inequalities
 
     @property
     def polyhedra(self):
         return self,
 
     def make_disjoint(self):
-        """
-        Return a polyhedron as disjoint.
-        """
         return self
 
     def isuniverse(self):
-        """
-        Return true if a polyhedron is the Universe set.
-        """
         islbset = self._toislbasicset(self.equalities, self.inequalities,
             self.symbols)
         universe = bool(libisl.isl_basic_set_is_universe(islbset))
@@ -119,15 +144,9 @@ class Polyhedron(Domain):
         return universe
 
     def aspolyhedron(self):
-        """
-        Return the polyhedral hull of a polyhedron.
-        """
         return self
 
     def __contains__(self, point):
-        """
-        Report whether a polyhedron constains an integer point
-        """
         if not isinstance(point, Point):
             raise TypeError('point must be a Point instance')
         if self.symbols != point.symbols:
@@ -141,10 +160,6 @@ class Polyhedron(Domain):
         return True
 
     def subs(self, symbol, expression=None):
-        """
-        Subsitute the given value into an expression and return the resulting
-        expression.
-        """
         equalities = [equality.subs(symbol, expression)
             for equality in self.equalities]
         inequalities = [inequality.subs(symbol, expression)
@@ -158,6 +173,9 @@ class Polyhedron(Domain):
         return inequalities
 
     def widen(self, other):
+        """
+        Compute the standard widening of two polyhedra, à la Halbwachs.
+        """
         if not isinstance(other, Polyhedron):
             raise ValueError('argument must be a Polyhedron instance')
         inequalities1 = self._asinequalities()
@@ -191,7 +209,7 @@ class Polyhedron(Domain):
                 coefficient = islhelper.isl_val_to_int(coefficient)
                 if coefficient != 0:
                     coefficients[symbol] = coefficient
-            expression = Expression(coefficients, constant)
+            expression = LinExpr(coefficients, constant)
             if libisl.isl_constraint_is_equality(islconstraint):
                 equalities.append(expression)
             else:
@@ -200,8 +218,7 @@ class Polyhedron(Domain):
         self = object().__new__(Polyhedron)
         self._equalities = tuple(equalities)
         self._inequalities = tuple(inequalities)
-        self._constraints = tuple(equalities + inequalities)
-        self._symbols = cls._xsymbols(self._constraints)
+        self._symbols = cls._xsymbols(self.constraints)
         self._dimension = len(self._symbols)
         return self
 
@@ -242,9 +259,6 @@ class Polyhedron(Domain):
 
     @classmethod
     def fromstring(cls, string):
-        """
-        Create and return a Polyhedron from a string.
-        """
         domain = Domain.fromstring(string)
         if not isinstance(domain, Polyhedron):
             raise ValueError('non-polyhedral expression: {!r}'.format(string))
@@ -261,7 +275,6 @@ class Polyhedron(Domain):
         else:
             return 'And({})'.format(', '.join(strings))
 
-
     def _repr_latex_(self):
         strings = []
         for equality in self.equalities:
@@ -272,18 +285,12 @@ class Polyhedron(Domain):
 
     @classmethod
     def fromsympy(cls, expr):
-        """
-        Convert a sympy object to a polyhedron.
-        """
         domain = Domain.fromsympy(expr)
         if not isinstance(domain, Polyhedron):
             raise ValueError('non-polyhedral expression: {!r}'.format(expr))
         return domain
 
     def tosympy(self):
-        """
-        Return a polyhedron as a sympy object.
-        """
         import sympy
         constraints = []
         for equality in self.equalities:
@@ -294,6 +301,9 @@ class Polyhedron(Domain):
 
 
 class EmptyType(Polyhedron):
+    """
+    The empty polyhedron, whose set of constraints is not satisfiable.
+    """
 
     __slots__ = Polyhedron.__slots__
 
@@ -301,7 +311,6 @@ class EmptyType(Polyhedron):
         self = object().__new__(cls)
         self._equalities = (Rational(1),)
         self._inequalities = ()
-        self._constraints = self._equalities
         self._symbols = ()
         self._dimension = 0
         return self
@@ -321,6 +330,10 @@ Empty = EmptyType()
 
 
 class UniverseType(Polyhedron):
+    """
+    The universe polyhedron, whose set of constraints is always satisfiable,
+    i.e. is empty.
+    """
 
     __slots__ = Polyhedron.__slots__
 
@@ -328,7 +341,6 @@ class UniverseType(Polyhedron):
         self = object().__new__(cls)
         self._equalities = ()
         self._inequalities = ()
-        self._constraints = ()
         self._symbols = ()
         self._dimension = ()
         return self
@@ -345,13 +357,13 @@ Universe = UniverseType()
 def _polymorphic(func):
     @functools.wraps(func)
     def wrapper(left, right):
-        if not isinstance(left, Expression):
+        if not isinstance(left, LinExpr):
             if isinstance(left, numbers.Rational):
                 left = Rational(left)
             else:
                 raise TypeError('left must be a a rational number '
                     'or a linear expression')
-        if not isinstance(right, Expression):
+        if not isinstance(right, LinExpr):
             if isinstance(right, numbers.Rational):
                 right = Rational(right)
             else:
@@ -363,41 +375,42 @@ def _polymorphic(func):
 @_polymorphic
 def Lt(left, right):
     """
-    Returns a Polyhedron instance with a single constraint as left less than right.
+    Create the polyhedron with constraints expr1 < expr2 < expr3 ...
     """
     return Polyhedron([], [right - left - 1])
 
 @_polymorphic
 def Le(left, right):
     """
-    Returns a Polyhedron instance with a single constraint as left less than or equal to right.
+    Create the polyhedron with constraints expr1 <= expr2 <= expr3 ...
     """
     return Polyhedron([], [right - left])
 
 @_polymorphic
 def Eq(left, right):
     """
-    Returns a Polyhedron instance with a single constraint as left equal to right.
+    Create the polyhedron with constraints expr1 == expr2 == expr3 ...
     """
     return Polyhedron([left - right], [])
 
 @_polymorphic
 def Ne(left, right):
     """
-    Returns a Polyhedron instance with a single constraint as left not equal to right.
+    Create the domain such that expr1 != expr2 != expr3 ... The result is a
+    Domain, not a Polyhedron.
     """
     return ~Eq(left, right)
 
 @_polymorphic
 def Gt(left, right):
     """
-    Returns a Polyhedron instance with a single constraint as left greater than right.
+    Create the polyhedron with constraints expr1 > expr2 > expr3 ...
     """
     return Polyhedron([], [left - right - 1])
 
 @_polymorphic
 def Ge(left, right):
     """
-    Returns a Polyhedron instance with a single constraint as left greater than or equal to right.
+    Create the polyhedron with constraints expr1 >= expr2 >= expr3 ...
     """
     return Polyhedron([], [left - right])