from . import islhelper
from .islhelper import mainctx, libisl
-from .linexprs import Expression, Symbol, Rational
+from .linexprs import LinExpr, Symbol, Rational
from .geometry import GeometricObject, Point, Vector
@functools.total_ordering
class Domain(GeometricObject):
+ """
+ A domain is a union of polyhedra. Unlike polyhedra, domains allow exact
+ computation of union and complementary operations.
+
+ A domain with a unique polyhedron is automatically subclassed as a
+ Polyhedron instance.
+ """
__slots__ = (
'_polyhedra',
)
def __new__(cls, *polyhedra):
+ """
+ Return a domain from a sequence of polyhedra.
+
+ >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
+ >>> square2 = Polyhedron('2 <= x <= 4, 2 <= y <= 4')
+ >>> dom = Domain([square, square2])
+
+ It is also possible to build domains from polyhedra using arithmetic
+ operators Domain.__and__(), Domain.__or__() or functions And() and Or(),
+ using one of the following instructions:
+
+ >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
+ >>> square2 = Polyhedron('2 <= x <= 4, 2 <= y <= 4')
+ >>> dom = square | square2
+ >>> dom = Or(square, square2)
+
+ Alternatively, a domain can be built from a string:
+
+ >>> dom = Domain('0 <= x <= 2, 0 <= y <= 2; 2 <= x <= 4, 2 <= y <= 4')
+
+ Finally, a domain can be built from a GeometricObject instance, calling
+ the GeometricObject.asdomain() method.
+ """
from .polyhedra import Polyhedron
if len(polyhedra) == 1:
argument = polyhedra[0]
@property
def polyhedra(self):
+ """
+ The tuple of polyhedra present in the domain.
+ """
return self._polyhedra
@property
def symbols(self):
+ """
+ The tuple of symbols present in the domain equations, sorted according
+ to Symbol.sortkey().
+ """
return self._symbols
@property
def dimension(self):
- return self._dimension
-
- def disjoint(self):
"""
- Returns this set as disjoint.
+ The dimension of the domain, i.e. the number of symbols present in it.
"""
- islset = self._toislset(self.polyhedra, self.symbols)
- islset = libisl.isl_set_make_disjoint(mainctx, islset)
- return self._fromislset(islset, self.symbols)
+ return self._dimension
def isempty(self):
"""
- Returns true if this set is an Empty set.
+ Return True if the domain is empty, that is, equal to Empty.
"""
islset = self._toislset(self.polyhedra, self.symbols)
empty = bool(libisl.isl_set_is_empty(islset))
return empty
def __bool__(self):
+ """
+ Return True if the domain is non-empty.
+ """
return not self.isempty()
def isuniverse(self):
"""
- Returns true if this set is the Universe set.
+ Return True if the domain is universal, that is, equal to Universe.
"""
islset = self._toislset(self.polyhedra, self.symbols)
universe = bool(libisl.isl_set_plain_is_universe(islset))
def isbounded(self):
"""
- Returns true if this set is bounded.
+ Return True if the domain is bounded.
"""
islset = self._toislset(self.polyhedra, self.symbols)
bounded = bool(libisl.isl_set_is_bounded(islset))
def __eq__(self, other):
"""
- Returns true if two sets are equal.
+ Return True if two domains are equal.
"""
symbols = self._xsymbols([self, other])
islset1 = self._toislset(self.polyhedra, symbols)
def isdisjoint(self, other):
"""
- Return True if two sets have a null intersection.
+ Return True if two domains have a null intersection.
"""
symbols = self._xsymbols([self, other])
islset1 = self._toislset(self.polyhedra, symbols)
def issubset(self, other):
"""
- Report whether another set contains this set.
+ Report whether another domain contains the domain.
"""
symbols = self._xsymbols([self, other])
islset1 = self._toislset(self.polyhedra, symbols)
return equal
def __le__(self, other):
- """
- Returns true if this set is less than or equal to another set.
- """
return self.issubset(other)
+ __le__.__doc__ = issubset.__doc__
def __lt__(self, other):
"""
- Returns true if this set is less than another set.
+ Report whether another domain is contained within the domain.
"""
symbols = self._xsymbols([self, other])
islset1 = self._toislset(self.polyhedra, symbols)
def complement(self):
"""
- Returns the complement of this set.
+ Return the complementary domain of the domain.
"""
islset = self._toislset(self.polyhedra, self.symbols)
islset = libisl.isl_set_complement(islset)
return self._fromislset(islset, self.symbols)
def __invert__(self):
+ return self.complement()
+ __invert__.__doc__ = complement.__doc__
+
+ def make_disjoint(self):
"""
- Returns the complement of this set.
+ Return an equivalent domain, whose polyhedra are disjoint.
"""
- return self.complement()
+ islset = self._toislset(self.polyhedra, self.symbols)
+ islset = libisl.isl_set_make_disjoint(mainctx, islset)
+ return self._fromislset(islset, self.symbols)
- def simplify(self):
+ def coalesce(self):
"""
- Returns a set without redundant constraints.
+ Simplify the representation of the domain by trying to combine pairs of
+ polyhedra into a single polyhedron, and return the resulting domain.
"""
islset = self._toislset(self.polyhedra, self.symbols)
- islset = libisl.isl_set_remove_redundancies(islset)
+ islset = libisl.isl_set_coalesce(islset)
return self._fromislset(islset, self.symbols)
- def aspolyhedron(self):
+ def detect_equalities(self):
+ """
+ Simplify the representation of the domain by detecting implicit
+ equalities, and return the resulting domain.
+ """
+ islset = self._toislset(self.polyhedra, self.symbols)
+ islset = libisl.isl_set_detect_equalities(islset)
+ return self._fromislset(islset, self.symbols)
+
+ def remove_redundancies(self):
"""
- Returns polyhedral hull of set.
+ Remove redundant constraints in the domain, and return the resulting
+ domain.
"""
+ islset = self._toislset(self.polyhedra, self.symbols)
+ islset = libisl.isl_set_remove_redundancies(islset)
+ return self._fromislset(islset, self.symbols)
+
+ def aspolyhedron(self):
from .polyhedra import Polyhedron
islset = self._toislset(self.polyhedra, self.symbols)
islbset = libisl.isl_set_polyhedral_hull(islset)
def asdomain(self):
return self
- def project(self, dims):
+ def project(self, symbols):
"""
- Return new set with given dimensions removed.
+ Project out the sequence of symbols given in arguments, and return the
+ resulting domain.
"""
islset = self._toislset(self.polyhedra, self.symbols)
n = 0
for index, symbol in reversed(list(enumerate(self.symbols))):
- if symbol in dims:
+ if symbol in symbols:
n += 1
elif n > 0:
- islset = libisl.isl_set_project_out(islset, libisl.isl_dim_set, index + 1, n)
+ islset = libisl.isl_set_project_out(islset,
+ libisl.isl_dim_set, index + 1, n)
n = 0
if n > 0:
islset = libisl.isl_set_project_out(islset, libisl.isl_dim_set, 0, n)
- dims = [symbol for symbol in self.symbols if symbol not in dims]
- return Domain._fromislset(islset, dims)
+ symbols = [symbol for symbol in self.symbols if symbol not in symbols]
+ return Domain._fromislset(islset, symbols)
def sample(self):
"""
- Returns a single subset of the input.
+ Return a sample of the domain, as an integer instance of Point. If the
+ domain is empty, a ValueError exception is raised.
"""
islset = self._toislset(self.polyhedra, self.symbols)
islpoint = libisl.isl_set_sample_point(islset)
def intersection(self, *others):
"""
- Return the intersection of two sets as a new set.
+ Return the intersection of two or more domains as a new domain. As an
+ alternative, function And() can be used.
"""
if len(others) == 0:
return self
return self._fromislset(islset1, symbols)
def __and__(self, other):
- """
- Return the intersection of two sets as a new set.
- """
return self.intersection(other)
+ __and__.__doc__ = intersection.__doc__
def union(self, *others):
"""
- Return the union of sets as a new set.
+ Return the union of two or more domains as a new domain. As an
+ alternative, function Or() can be used.
"""
if len(others) == 0:
return self
return self._fromislset(islset1, symbols)
def __or__(self, other):
- """
- Return a new set with elements from both sets.
- """
return self.union(other)
+ __or__.__doc__ = union.__doc__
def __add__(self, other):
- """
- Return new set containing all elements in both sets.
- """
return self.union(other)
+ __add__.__doc__ = union.__doc__
def difference(self, other):
"""
- Return the difference of two sets as a new set.
+ Return the difference of two domains as a new domain.
"""
symbols = self._xsymbols([self, other])
islset1 = self._toislset(self.polyhedra, symbols)
return self._fromislset(islset, symbols)
def __sub__(self, other):
- """
- Return the difference of two sets as a new set.
- """
return self.difference(other)
+ __sub__.__doc__ = difference.__doc__
def lexmin(self):
"""
- Return a new set containing the lexicographic minimum of the elements in the set.
+ Return the lexicographic minimum of the elements in the domain.
"""
islset = self._toislset(self.polyhedra, self.symbols)
islset = libisl.isl_set_lexmin(islset)
def lexmax(self):
"""
- Return a new set containing the lexicographic maximum of the elements in the set.
+ Return the lexicographic maximum of the elements in the domain.
"""
islset = self._toislset(self.polyhedra, self.symbols)
islset = libisl.isl_set_lexmax(islset)
return self._fromislset(islset, self.symbols)
-
- def involves_vars(self, vars):
- """
- Returns true if a set depends on given dimensions.
- """
- islset = self._toislset(self.polyhedra, self.symbols)
- dims = sorted(vars)
- symbols = sorted(list(self.symbols))
- n = 0
- if len(dims)>0:
- for dim in dims:
- if dim in symbols:
- first = symbols.index(dims[0])
- n +=1
- else:
- first = 0
- else:
- return False
- value = bool(libisl.isl_set_involves_dims(islset, libisl.isl_dim_set, first, n))
- libisl.isl_set_free(islset)
- return value
-
_RE_COORDINATE = re.compile(r'\((?P<num>\-?\d+)\)(/(?P<den>\d+))?')
def vertices(self):
"""
- Return a list of vertices for this Polygon.
+ Return the vertices of the domain, as a list of rational instances of
+ Point.
"""
from .polyhedra import Polyhedron
if not self.isbounded():
raise ValueError('domain must be bounded')
- islbset = self._toislbasicset(self.equalities, self.inequalities, self.symbols)
+ islbset = self._toislbasicset(self.equalities, self.inequalities,
+ self.symbols)
vertices = libisl.isl_basic_set_compute_vertices(islbset);
vertices = islhelper.isl_vertices_vertices(vertices)
points = []
def points(self):
"""
- Returns the points contained in the set.
+ Return the integer points of a bounded domain, as a list of integer
+ instances of Point. If the domain is not bounded, a ValueError exception
+ is raised.
"""
if not self.isbounded():
raise ValueError('domain must be bounded')
points.append(Point(coordinates))
return points
+ def __contains__(self, point):
+ """
+ Return True if the point if contained within the domain.
+ """
+ for polyhedron in self.polyhedra:
+ if point in polyhedron:
+ return True
+ return False
+
@classmethod
def _polygon_inner_point(cls, points):
symbols = points[0].symbols
def faces(self):
"""
- Returns the vertices of the faces of a polyhedra.
+ Return the list of faces of a bounded domain. Each face is represented
+ by a list of vertices, in the form of rational instances of Point. If
+ the domain is not bounded, a ValueError exception is raised.
"""
faces = []
for polyhedron in self.polyhedra:
axes.set_zlim(zmin, zmax)
return axes
-
def plot(self, plot=None, **kwargs):
"""
- Display plot of this set.
+ Plot a 2D or 3D domain using matplotlib. Draw it to the current plot
+ object if present, otherwise create a new one. options are keyword
+ arguments passed to the matplotlib drawing functions, they can be used
+ to set the drawing color for example. Raise ValueError is the domain is
+ not 2D or 3D.
"""
if not self.isbounded():
raise ValueError('domain must be bounded')
else:
raise ValueError('polyhedron must be 2 or 3-dimensional')
- def __contains__(self, point):
- for polyhedron in self.polyhedra:
- if point in polyhedron:
- return True
- return False
-
def subs(self, symbol, expression=None):
"""
- Subsitute the given value into an expression and return the resulting
- expression.
+ Substitute the given symbol by an expression in the domain constraints.
+ To perform multiple substitutions at once, pass a sequence or a
+ dictionary of (old, new) pairs to subs. The syntax of this function is
+ similar to LinExpr.subs().
"""
polyhedra = [polyhedron.subs(symbol, expression)
for polyhedron in self.polyhedra]
elif isinstance(node, ast.Compare):
equalities = []
inequalities = []
- left = Expression._fromast(node.left)
+ left = LinExpr._fromast(node.left)
for i in range(len(node.ops)):
op = node.ops[i]
- right = Expression._fromast(node.comparators[i])
+ right = LinExpr._fromast(node.comparators[i])
if isinstance(op, ast.Lt):
inequalities.append(right - left - 1)
elif isinstance(op, ast.LtE):
_RE_AND = re.compile(r'\band\b|,|&&|/\\|∧|∩')
_RE_OR = re.compile(r'\bor\b|;|\|\||\\/|∨|∪')
_RE_NOT = re.compile(r'\bnot\b|!|¬')
- _RE_NUM_VAR = Expression._RE_NUM_VAR
+ _RE_NUM_VAR = LinExpr._RE_NUM_VAR
_RE_OPERATORS = re.compile(r'(&|\||~)')
@classmethod
def fromstring(cls, string):
+ """
+ Create a domain from a string. Raise SyntaxError if the string is not
+ properly formatted.
+ """
# remove curly brackets
string = cls._RE_BRACES.sub(r'', string)
# replace '=' by '=='
@classmethod
def fromsympy(cls, expr):
+ """
+ Create a domain from a sympy expression.
+ """
import sympy
from .polyhedra import Lt, Le, Eq, Ne, Ge, Gt
funcmap = {
args = [Domain.fromsympy(arg) for arg in expr.args]
return funcmap[expr.func](*args)
elif isinstance(expr, sympy.Expr):
- return Expression.fromsympy(expr)
+ return LinExpr.fromsympy(expr)
raise ValueError('non-domain expression: {!r}'.format(expr))
def tosympy(self):
+ """
+ Convert the domain to a sympy expression.
+ """
import sympy
polyhedra = [polyhedron.tosympy() for polyhedron in polyhedra]
return sympy.Or(*polyhedra)
def And(*domains):
"""
- Return the intersection of two sets as a new set.
+ Create the intersection domain of the domains given in arguments.
"""
if len(domains) == 0:
from .polyhedra import Universe
return Universe
else:
return domains[0].intersection(*domains[1:])
+And.__doc__ = Domain.intersection.__doc__
def Or(*domains):
"""
- Return the union of sets as a new set.
+ Create the union domain of the domains given in arguments.
"""
if len(domains) == 0:
from .polyhedra import Empty
return Empty
else:
return domains[0].union(*domains[1:])
+Or.__doc__ = Domain.union.__doc__
def Not(domain):
"""
- Returns the complement of this set.
+ Create the complementary domain of the domain given in argument.
"""
return ~domain
+Not.__doc__ = Domain.complement.__doc__