from fractions import Fraction
from . import islhelper
-from .islhelper import mainctx, libisl, isl_set_basic_sets
-from .geometry import GeometricObject
-from .coordinates import Point
+from .islhelper import mainctx, libisl
+from .geometry import GeometricObject, Point
from .linexprs import Expression, Symbol
return self._dimension
def disjoint(self):
+ """
+ Returns this set as disjoint.
+ """
islset = self._toislset(self.polyhedra, self.symbols)
islset = libisl.isl_set_make_disjoint(mainctx, islset)
return self._fromislset(islset, self.symbols)
def isempty(self):
+ """
+ Returns true if this set is an Empty set.
+ """
islset = self._toislset(self.polyhedra, self.symbols)
empty = bool(libisl.isl_set_is_empty(islset))
libisl.isl_set_free(islset)
return not self.isempty()
def isuniverse(self):
+ """
+ Returns true if this set is the Universe set.
+ """
islset = self._toislset(self.polyhedra, self.symbols)
universe = bool(libisl.isl_set_plain_is_universe(islset))
libisl.isl_set_free(islset)
return universe
def isbounded(self):
+ """
+ Returns true if this set is bounded.
+ """
islset = self._toislset(self.polyhedra, self.symbols)
bounded = bool(libisl.isl_set_is_bounded(islset))
libisl.isl_set_free(islset)
return bounded
def __eq__(self, other):
+ """
+ Returns true if two sets are equal.
+ """
symbols = self._xsymbols([self, other])
islset1 = self._toislset(self.polyhedra, symbols)
islset2 = other._toislset(other.polyhedra, symbols)
return equal
def isdisjoint(self, other):
+ """
+ Return True if two sets have a null intersection.
+ """
symbols = self._xsymbols([self, other])
islset1 = self._toislset(self.polyhedra, symbols)
islset2 = self._toislset(other.polyhedra, symbols)
return equal
def issubset(self, other):
+ """
+ Report whether another set contains this set.
+ """
symbols = self._xsymbols([self, other])
islset1 = self._toislset(self.polyhedra, symbols)
islset2 = self._toislset(other.polyhedra, symbols)
return equal
def __le__(self, other):
+ """
+ Returns true if this set is less than or equal to another set.
+ """
return self.issubset(other)
def __lt__(self, other):
+ """
+ Returns true if this set is less than another set.
+ """
symbols = self._xsymbols([self, other])
islset1 = self._toislset(self.polyhedra, symbols)
islset2 = self._toislset(other.polyhedra, symbols)
return equal
def complement(self):
+ """
+ Returns the complement of this set.
+ """
islset = self._toislset(self.polyhedra, self.symbols)
islset = libisl.isl_set_complement(islset)
return self._fromislset(islset, self.symbols)
def __invert__(self):
+ """
+ Returns the complement of this set.
+ """
return self.complement()
def simplify(self):
- #does not change anything in any of the examples
- #isl seems to do this naturally
+ """
+ Returns a set without redundant constraints.
+ """
islset = self._toislset(self.polyhedra, self.symbols)
islset = libisl.isl_set_remove_redundancies(islset)
return self._fromislset(islset, self.symbols)
def aspolyhedron(self):
- # several types of hull are available
- # polyhedral seems to be the more appropriate, to be checked
+ """
+ Returns polyhedral hull of set.
+ """
from .polyhedra import Polyhedron
islset = self._toislset(self.polyhedra, self.symbols)
islbset = libisl.isl_set_polyhedral_hull(islset)
return self
def project(self, dims):
- # use to remove certain variables
+ """
+ Return new set with given dimensions removed.
+ """
islset = self._toislset(self.polyhedra, self.symbols)
n = 0
for index, symbol in reversed(list(enumerate(self.symbols))):
return Domain._fromislset(islset, dims)
def sample(self):
+ """
+ Returns a single subset of the input.
+ """
islset = self._toislset(self.polyhedra, self.symbols)
islpoint = libisl.isl_set_sample_point(islset)
if bool(libisl.isl_point_is_void(islpoint)):
return point
def intersection(self, *others):
+ """
+ Return the intersection of two sets as a new set.
+ """
if len(others) == 0:
return self
symbols = self._xsymbols((self,) + others)
return self._fromislset(islset1, symbols)
def __and__(self, other):
+ """
+ Return the intersection of two sets as a new set.
+ """
return self.intersection(other)
def union(self, *others):
+ """
+ Return the union of sets as a new set.
+ """
if len(others) == 0:
return self
symbols = self._xsymbols((self,) + others)
return self._fromislset(islset1, symbols)
def __or__(self, other):
+ """
+ Return a new set with elements from both sets.
+ """
return self.union(other)
def __add__(self, other):
+ """
+ Return new set containing all elements in both sets.
+ """
return self.union(other)
def difference(self, other):
+ """
+ Return the difference of two sets as a new set.
+ """
symbols = self._xsymbols([self, other])
islset1 = self._toislset(self.polyhedra, symbols)
islset2 = other._toislset(other.polyhedra, symbols)
return self._fromislset(islset, symbols)
def __sub__(self, other):
+ """
+ Return the difference of two sets as a new set.
+ """
return self.difference(other)
def lexmin(self):
+ """
+ Return a new set containing the lexicographic minimum of the elements in the set.
+ """
islset = self._toislset(self.polyhedra, self.symbols)
islset = libisl.isl_set_lexmin(islset)
return self._fromislset(islset, self.symbols)
def lexmax(self):
+ """
+ Return a new set containing the lexicographic maximum of the elements in the set.
+ """
islset = self._toislset(self.polyhedra, self.symbols)
islset = libisl.isl_set_lexmax(islset)
return self._fromislset(islset, self.symbols)
def num_parameters(self):
- #could be useful with large, complicated polyhedrons
+ """
+ Return the total number of parameters, input, output or set dimensions.
+ """
islbset = self._toislbasicset(self.equalities, self.inequalities, self.symbols)
num = libisl.isl_basic_set_dim(islbset, libisl.isl_dim_set)
return num
def involves_dims(self, dims):
- #could be useful with large, complicated polyhedrons
+ """
+ Returns true if set depends on given dimensions.
+ """
islset = self._toislset(self.polyhedra, self.symbols)
dims = sorted(dims)
symbols = sorted(list(self.symbols))
_RE_COORDINATE = re.compile(r'\((?P<num>\-?\d+)\)(/(?P<den>\d+))?')
def vertices(self):
- #returning list of verticies
+ """
+ Return a list of vertices for this Polygon.
+ """
from .polyhedra import Polyhedron
+ if not self.isbounded():
+ raise ValueError('domain must be bounded')
islbset = self._toislbasicset(self.equalities, self.inequalities, self.symbols)
vertices = libisl.isl_basic_set_compute_vertices(islbset);
vertices = islhelper.isl_vertices_vertices(vertices)
coordinate = -Fraction(constant, coefficient)
coordinates.append((symbol, coordinate))
else:
+
# horrible hack, find a cleaner solution
string = islhelper.isl_multi_aff_to_str(expr)
matches = self._RE_COORDINATE.finditer(string)
return points
def points(self):
+ """
+ Returns the points contained in the set.
+ """
if not self.isbounded():
raise ValueError('domain must be bounded')
from .polyhedra import Universe, Eq
def _fromislset(cls, islset, symbols):
from .polyhedra import Polyhedron
islset = libisl.isl_set_remove_divs(islset)
- islbsets = isl_set_basic_sets(islset)
+ islbsets = islhelper.isl_set_basic_sets(islset)
libisl.isl_set_free(islset)
polyhedra = []
for islbset in islbsets:
strings = [repr(polyhedron) for polyhedron in self.polyhedra]
return 'Or({})'.format(', '.join(strings))
+ def _repr_latex_(self):
+ strings = []
+ for polyhedron in self.polyhedra:
+ strings.append('({})'.format(polyhedron._repr_latex_().strip('$')))
+ return '$${}$$'.format(' \\vee '.join(strings))
+
@classmethod
def fromsympy(cls, expr):
import sympy
def And(*domains):
+ """
+ Return the intersection of two sets as a new set.
+ """
if len(domains) == 0:
from .polyhedra import Universe
return Universe
return domains[0].intersection(*domains[1:])
def Or(*domains):
+ """
+ Return the union of sets as a new set.
+ """
if len(domains) == 0:
from .polyhedra import Empty
return Empty
return domains[0].union(*domains[1:])
def Not(domain):
+ """
+ Returns the complement of this set.
+ """
return ~domain