def __gt__(self, other):
return Polyhedron(inequalities=[(self - other)._toint() - 1])
+ @classmethod
+ def fromsympy(cls, expr):
+ import sympy
+ coefficients = {}
+ constant = 0
+ for symbol, coefficient in expr.as_coefficients_dict().items():
+ coefficient = Fraction(coefficient.p, coefficient.q)
+ if symbol == sympy.S.One:
+ constant = coefficient
+ elif isinstance(symbol, sympy.Symbol):
+ symbol = symbol.name
+ coefficients[symbol] = coefficient
+ else:
+ raise ValueError('non-linear expression: {!r}'.format(expr))
+ return cls(coefficients, constant)
+
+ def tosympy(self):
+ import sympy
+ expr = 0
+ for symbol, coefficient in self.coefficients():
+ term = coefficient * sympy.Symbol(symbol)
+ expr += term
+ expr += self.constant
+ return expr
+
class Constant(Expression):
return '{}({!r}, {!r})'.format(self.__class__.__name__,
self.constant.numerator, self.constant.denominator)
+ @classmethod
+ def fromsympy(cls, expr):
+ import sympy
+ if isinstance(expr, sympy.Rational):
+ return cls(expr.p, expr.q)
+ elif isinstance(expr, numbers.Rational):
+ return cls(expr)
+ else:
+ raise TypeError('expr must be a sympy.Rational instance')
+
+
class Symbol(Expression):
__slots__ = Expression.__slots__ + (
def __repr__(self):
return '{}({!r})'.format(self.__class__.__name__, self._name)
+ @classmethod
+ def fromsympy(cls, expr):
+ import sympy
+ if isinstance(expr, sympy.Symbol):
+ return cls(expr.name)
+ else:
+ raise TypeError('expr must be a sympy.Symbol instance')
+
+
def symbols(names):
if isinstance(names, str):
names = names.replace(',', ' ').split()