-
import functools
import math
import numbers
from . import islhelper
from .islhelper import mainctx, libisl
+from .geometry import GeometricObject, Point, Vector
from .linexprs import Expression, Symbol, Rational
from .domains import Domain
if inequalities is not None:
raise TypeError('too many arguments')
return cls.fromstring(equalities)
- elif isinstance(equalities, Polyhedron):
- if inequalities is not None:
- raise TypeError('too many arguments')
- return equalities
- elif isinstance(equalities, Domain):
+ elif isinstance(equalities, GeometricObject):
if inequalities is not None:
raise TypeError('too many arguments')
return equalities.aspolyhedron()
def aspolyhedron(self):
return self
+ def __contains__(self, point):
+ if not isinstance(point, Point):
+ raise TypeError('point must be a Point instance')
+ if self.symbols != point.symbols:
+ raise ValueError('arguments must belong to the same space')
+ for equality in self.equalities:
+ if equality.subs(point.coordinates()) != 0:
+ return False
+ for inequality in self.inequalities:
+ if inequality.subs(point.coordinates()) < 0:
+ return False
+ return True
+
def subs(self, symbol, expression=None):
equalities = [equality.subs(symbol, expression)
for equality in self.equalities]
constraints.append(sympy.Ge(inequality.tosympy(), 0))
return sympy.And(*constraints)
+ @classmethod
+ def _polygon_inner_point(cls, points):
+ symbols = points[0].symbols
+ coordinates = {symbol: 0 for symbol in symbols}
+ for point in points:
+ for symbol, coordinate in point.coordinates():
+ coordinates[symbol] += coordinate
+ for symbol in symbols:
+ coordinates[symbol] /= len(points)
+ return Point(coordinates)
+
@classmethod
def _sort_polygon_2d(cls, points):
if len(points) <= 3:
return points
- o = sum((Vector(point) for point in points)) / len(points)
- o = Point(o.coordinates())
+ o = cls._polygon_inner_point(points)
angles = {}
for m in points:
om = Vector(o, m)
- dx, dy = (coordinate for symbol, coordinates in om.coordinates())
+ dx, dy = (coordinate for symbol, coordinate in om.coordinates())
angle = math.atan2(dy, dx)
angles[m] = angle
return sorted(points, key=angles.get)
def _sort_polygon_3d(cls, points):
if len(points) <= 3:
return points
- o = sum((Vector(point) for point in points)) / len(points)
- o = Point(o.coordinates())
- a, b = points[:2]
+ o = cls._polygon_inner_point(points)
+ a = points[0]
oa = Vector(o, a)
- ob = Vector(o, b)
norm_oa = oa.norm()
- u = (oa.cross(ob)).asunit()
+ for b in points[1:]:
+ ob = Vector(o, b)
+ u = oa.cross(ob)
+ if not u.isnull():
+ u = u.asunit()
+ break
+ else:
+ raise ValueError('degenerate polygon')
angles = {a: 0.}
for m in points[1:]:
om = Vector(o, m)
angles[m] = angle
return sorted(points, key=angles.get)
+ def faces(self):
+ vertices = self.vertices()
+ faces = []
+ for constraint in self.constraints:
+ face = []
+ for vertex in vertices:
+ if constraint.subs(vertex.coordinates()) == 0:
+ face.append(vertex)
+ faces.append(face)
+ return faces
+
def plot(self):
import matplotlib.pyplot as plt
from matplotlib.path import Path
def _polymorphic(func):
@functools.wraps(func)
def wrapper(left, right):
- if isinstance(left, numbers.Rational):
- left = Rational(left)
- elif not isinstance(left, Expression):
- raise TypeError('left must be a a rational number '
- 'or a linear expression')
- if isinstance(right, numbers.Rational):
- right = Rational(right)
- elif not isinstance(right, Expression):
- raise TypeError('right must be a a rational number '
- 'or a linear expression')
+ if not isinstance(left, Expression):
+ if isinstance(left, numbers.Rational):
+ left = Rational(left)
+ else:
+ raise TypeError('left must be a a rational number '
+ 'or a linear expression')
+ if not isinstance(right, Expression):
+ if isinstance(right, numbers.Rational):
+ right = Rational(right)
+ else:
+ raise TypeError('right must be a a rational number '
+ 'or a linear expression')
return func(left, right)
return wrapper