+import ctypes, ctypes.util
import functools
import numbers
-import json
-import ctypes, ctypes.util
-from pypol import isl
-from . import isl, islhelper
from fractions import Fraction, gcd
-libisl = ctypes.CDLL(ctypes.util.find_library('isl'))
+from . import isl, islhelper
+from .isl import libisl, Context, BasicSet
-libisl.isl_printer_get_str.restype = ctypes.c_char_p
__all__ = [
'Expression',
'empty', 'universe'
]
-ids = {}
-
-def get_ids(co):
- if co in ids:
- return ids.get(co)
- else:
- idd = len(ids)
- ids[co] = idd
- #print(ids)
- return idd
def _polymorphic_method(func):
@functools.wraps(func)
raise TypeError('arguments must be linear expressions')
return wrapper
-class Context:
-
- __slots__ = ('_ic')
-
- def __init__(self):
- self._ic = libisl.isl_ctx_alloc()
-
- @property
- def _as_parameter_(self):
- return self._ic
-
- #comment out so does not delete itself after being created
- #def __del__(self):
- # libisl.isl_ctx_free(self)
-
- def __eq__(self, other):
- if not isinstance(other, Context):
- return False
- return self._ic == other._ic
-
-
-
class Expression:
"""
return self.coefficient(symbol)
return int(self.constant)
-
def symbol(self):
if not self.issymbol():
raise ValueError('not a symbol: {}'.format(self))
def __rsub__(self, other):
return -(self - other)
-
+
@_polymorphic_method
def __mul__(self, other):
if other.isconstant():
if value.denominator != 1:
raise TypeError('non-integer constraint: '
'{} <= 0'.format(constraint))
- self._inequalities.append(constraint)
- self._bset = self.to_isl()
- #print(self._bset)
- #put this here just to test from isl method
- #from_isl = self.from_isl(self._bset)
- #print(from_isl)
- #rint(self)
- return self
-
-
+ self._inequalities.append(constraint)
+ return self
+
@property
def equalities(self):
yield from self._equalities
@property
def inequalities(self):
yield from self._inequalities
-
+
@property
def constant(self):
return self._constant
def isconstant(self):
return len(self._coefficients) == 0
-
-
+
def isempty(self):
return bool(libisl.isl_basic_set_is_empty(self._bset))
yield from self.equalities
yield from self.inequalities
-
def symbols(self):
s = set()
for constraint in self.constraints():
s.update(constraint.symbols())
return sorted(s)
-
+
@property
def dimension(self):
return len(self.symbols())
return False
else:
return True
-
def __contains__(self, value):
# is the value in the polyhedron?
# test whether every element in other is in the polyhedron
for value in other:
if value == self.constraints():
- return True
+ return True
else:
- return False
+ return False
raise NotImplementedError
def __ge__(self, other):
@classmethod
def fromstring(cls, string):
raise NotImplementedError
-
- def _symbolunion(self, *others):
- print(self)
+
+ def _symbolunion(self, *others):
symbols = set(self.symbols())
for other in others:
symbols.update(other.symbols())
return sorted(symbols)
-
- def to_isl(self, symbols=None):
+
+ def _to_isl(self, symbols=None):
if symbols is None:
symbols = self.symbols()
- print(symbols)
- print('>>>', self)
- print('eq:', list(self.equalities))
- print('ineq:', list(self.inequalities))
num_coefficients = len(symbols)
ctx = Context()
space = libisl.isl_space_set_alloc(ctx, 0, num_coefficients)
- bset = libisl.isl_basic_set_universe(libisl.isl_space_copy(space))
+ bset = libisl.isl_basic_set_universe(libisl.isl_space_copy(space))
ls = libisl.isl_local_space_from_space(space)
ceq = libisl.isl_equality_alloc(libisl.isl_local_space_copy(ls))
cin = libisl.isl_inequality_alloc(libisl.isl_local_space_copy(ls))
for eq in coeff_eq:
num = coeff_eq.get(eq)
iden = symbols.index(eq)
- print('id of var {} is {}, coeff is {}'.format(eq, iden, num))
- ceq = libisl.isl_constraint_set_coefficient_si(ceq, islhelper.isl_dim_set, iden, num) #use 3 for type isl_dim_set
- bset = libisl.isl_basic_set_add_constraint(bset, ceq)
+ ceq = libisl.isl_constraint_set_coefficient_si(ceq, islhelper.isl_dim_set, iden, num) #use 3 for type isl_dim_set
+ bset = libisl.isl_basic_set_add_constraint(bset, ceq)
if list(self.inequalities): #check if any inequalities exist
for ineq in self.inequalities:
coeff_in = dict(ineq.coefficients)
for ineq in coeff_in:
num = coeff_in.get(ineq)
iden = symbols.index(ineq)
- print('id of var {} is {}, coeff is {}'.format(ineq, iden, num))
- cin = libisl.isl_constraint_set_coefficient_si(cin, islhelper.isl_dim_set, iden, num) #use 3 for type isl_dim_set
- bset = libisl.isl_basic_set_add_constraint(bset, cin)
- ip = libisl.isl_printer_to_str(ctx) #create string printer
- ip = libisl.isl_printer_print_basic_set(ip, bset) #print basic set to printer
- string = libisl.isl_printer_get_str(ip) #get string from printer
- string = str(string.decode())
- print(string)
+ cin = libisl.isl_constraint_set_coefficient_si(cin, islhelper.isl_dim_set, iden, num) #use 3 for type isl_dim_set
+ bset = libisl.isl_basic_set_add_constraint(bset, cin)
+ bset = BasicSet(bset)
return bset
-
-
+
def from_isl(self, bset):
'''takes basic set in isl form and puts back into python version of polyhedron
isl example code gives isl form as:
b'{ [i0] : 1 = 0 }' '''
#bset = self
if self._equalities:
- constraints = libisl.isl_basic_set_equalities_matrix(bset, 3)
+ constraints = libisl.isl_basic_set_equalities_matrix(bset, 3)
elif self._inequalities:
- constraints = libisl.isl_basic_set_inequalities_matrix(bset, 3)
+ constraints = libisl.isl_basic_set_inequalities_matrix(bset, 3)
print(constraints)
return constraints
-#empty = eq(0,1)
-empty = None
-universe = None
+empty = None #eq(0,1)
+universe = None #Polyhedron()
if __name__ == '__main__':
ex1 = Expression(coefficients={'a': 1, 'x': 2}, constant=2)
ex2 = Expression(coefficients={'a': 3 , 'b': 2}, constant=3)
p = Polyhedron(inequalities=[ex1, ex2])
- #p = eq(ex2, 0)# 2a+4 = 0, in fact 6a+3 = 0
- #p.to_isl()
-
-#universe = Polyhedron()
+ bs = p._to_isl()
+ print(bs)