for symbol in substitutions:
if not isinstance(symbol, Symbol):
raise TypeError('symbols must be Symbol instances')
- result = self._constant
+ result = Rational(self._constant)
for symbol, coefficient in self._coefficients.items():
expression = substitutions.get(symbol, symbol)
result += coefficient * expression
# Add implicit multiplication operators, e.g. '5x' -> '5*x'.
string = LinExpr._RE_NUM_VAR.sub(r'\1*\2', string)
tree = ast.parse(string, 'eval')
- expr = cls._fromast(tree)
- if not isinstance(expr, cls):
+ expression = cls._fromast(tree)
+ if not isinstance(expression, cls):
raise SyntaxError('invalid syntax')
- return expr
+ return expression
def __repr__(self):
string = ''
return '({})'.format(string)
@classmethod
- def fromsympy(cls, expr):
+ def fromsympy(cls, expression):
"""
Create a linear expression from a SymPy expression. Raise TypeError is
the sympy expression is not linear.
import sympy
coefficients = []
constant = 0
- for symbol, coefficient in expr.as_coefficients_dict().items():
+ for symbol, coefficient in expression.as_coefficients_dict().items():
coefficient = Fraction(coefficient.p, coefficient.q)
if symbol == sympy.S.One:
constant = coefficient
symbol = Symbol(symbol.name)
coefficients.append((symbol, coefficient))
else:
- raise TypeError('non-linear expression: {!r}'.format(expr))
- expr = LinExpr(coefficients, constant)
- if not isinstance(expr, cls):
+ raise TypeError('non-linear expression: {!r}'.format(expression))
+ expression = LinExpr(coefficients, constant)
+ if not isinstance(expression, cls):
raise TypeError('cannot convert to a {} instance'.format(cls.__name__))
- return expr
+ return expression
def tosympy(self):
"""
Convert the linear expression to a SymPy expression.
"""
import sympy
- expr = 0
+ expression = 0
for symbol, coefficient in self.coefficients():
term = coefficient * sympy.Symbol(symbol.name)
- expr += term
- expr += self.constant
- return expr
+ expression += term
+ expression += self.constant
+ return expression
class Symbol(LinExpr):