+print('sq2 - sq1 =', sq2 - sq1) #test subtraction
+print('sq2 - sq1 =', Polyhedron(sq2 - sq1)) #test subtraction
+print('sq1 - sq1 =', Polyhedron(sq1 - sq1)) #test subtraction
+print()
+print('sq1 ∩ sq2 =', sq1 & sq2) #test intersection
+print('sq1 ∪ sq2 =', sq1 | sq2) #test union
+print()
+print('sq1 ⊔ sq2 =', Polyhedron(sq1 | sq2)) # test convex union
+print()
+print('check if sq1 and sq2 disjoint:', sq1.isdisjoint(sq2)) #should return false
+print()
+print('sq1 disjoint:', sq1.disjoint()) #make disjoint
+print('sq2 disjoint:', sq2.disjoint()) #make disjoint
+print()
+print('is square 1 universe?:', sq1.isuniverse()) #test if square is universe
+print('is u universe?:', universe.isuniverse()) #test if square is universe
+print()
+print('is sq1 a subset of sq2?:', sq1.issubset(sq2)) #test issubset()
+print('is sq4 less than sq3?:', sq4.__lt__(sq3)) # test lt(), must be a strict subset
+print()
+print('lexographic min of sq1:', sq1.lexmin()) #test lexmin()
+print('lexographic max of sq1:', sq1.lexmax()) #test lexmin()
+print()
+print('lexographic min of sq2:', sq2.lexmin()) #test lexmax()
+print('lexographic max of sq2:', sq2.lexmax()) #test lexmax()
+print()
+print('Polyhedral hull of sq1 + sq2 is:', q.aspolyhedron()) #test polyhedral hull
+print()
+print('is sq1 bounded?', sq1.isbounded()) #unbounded should return True
+print('is sq5 bounded?', sq5.isbounded()) #unbounded should return False
+print()
+print('sq6:', sq6)
+print('sq6 simplified:', sq6.sample())
+print()
+print(universe.project([x]))
+print('sq7 with out constraints involving y and a', sq7.project([a, z, x, y])) #drops dims that are passed
+print()
+print('sq1 has {} parameters'.format(sq1.num_parameters()))
+print()
+print('does sq1 constraints involve x?', sq1.involves_dims([x]))