projects
/
linpy.git
/ blobdiff
commit
grep
author
committer
pickaxe
?
search:
re
summary
|
shortlog
|
log
|
commit
|
commitdiff
|
tree
raw
|
inline
| side by side
Let's test complement, not compliment
[linpy.git]
/
examples
/
squares.py
diff --git
a/examples/squares.py
b/examples/squares.py
index
898f765
..
d606631
100755
(executable)
--- a/
examples/squares.py
+++ b/
examples/squares.py
@@
-2,15
+2,17
@@
from pypol import *
from pypol import *
-
x, y = symbols('x y
')
+
a, x, y, z = symbols('a x y z
')
sq1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2)
sq1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2)
-sq2 = Le(1, x) & Le(x, 3) & Le(1, y) & Le(y, 3)
-
+sq2 = Le(2, x) & Le(x, 4) & Le(2, y) & Le(y, 4)
sq3 = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3)
sq4 = Le(1, x) & Le(x, 2) & Le(1, y) & Le(y, 2)
sq3 = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3)
sq4 = Le(1, x) & Le(x, 2) & Le(1, y) & Le(y, 2)
-sq5 = Le(1, x) & Le(x, 2) & Le(1, y)
+sq5 = Le(1, x) & Le(x, 2) & Le(1, y)
+sq6 = Le(1, x) & Le(x, 2) & Le(1, y) & Eq(y, 3)
+sq7 = Le(0, x) & Le(x, 2) & Le(0, y) & Eq(z, 2) & Le(a, 3)
u = Polyhedron([])
u = Polyhedron([])
+x = sq1 - sq2
print('sq1 =', sq1) #print correct square
print('sq2 =', sq2) #print correct square
print('sq1 =', sq1) #print correct square
print('sq2 =', sq2) #print correct square
@@
-18,23
+20,26
@@
print('sq3 =', sq3) #print correct square
print('sq4 =', sq4) #print correct square
print('u =', u) #print correct square
print()
print('sq4 =', sq4) #print correct square
print('u =', u) #print correct square
print()
-print('¬sq1 =', ~sq1) #test compl
i
ment
+print('¬sq1 =', ~sq1) #test compl
e
ment
print()
print('sq1 + sq1 =', sq1 + sq2) #test addition
print()
print('sq1 + sq1 =', sq1 + sq2) #test addition
-print('sq1 + sq2 =', Polyhedron(sq1 + sq2))
-print('sq1 - sq1 =', u - u)
+print('sq1 + sq2 =', Polyhedron(sq1 + sq2)) #test addition
+print()
+print('u + u =', u + u)#test addition
+print('u - u =', u - u) #test subtraction
+print()
print('sq2 - sq1 =', sq2 - sq1) #test subtraction
print('sq2 - sq1 =', sq2 - sq1) #test subtraction
-print('sq2 - sq1 =', Polyhedron(sq2 - sq1))
-print('sq1 - sq1 =', Polyhedron(sq1 - sq1)) #test
polyhedreon
+print('sq2 - sq1 =', Polyhedron(sq2 - sq1))
#test subtraction
+print('sq1 - sq1 =', Polyhedron(sq1 - sq1)) #test
subtraction
print()
print('sq1 ∩ sq2 =', sq1 & sq2) #test intersection
print('sq1 ∪ sq2 =', sq1 | sq2) #test union
print()
print()
print('sq1 ∩ sq2 =', sq1 & sq2) #test intersection
print('sq1 ∪ sq2 =', sq1 | sq2) #test union
print()
-print('sq1 ⊔ sq2 =', Polyhedron(sq1 | sq2)) #test convex union
+print('sq1 ⊔ sq2 =', Polyhedron(sq1 | sq2)) #
test convex union
print()
print('check if sq1 and sq2 disjoint:', sq1.isdisjoint(sq2)) #should return false
print()
print()
print('check if sq1 and sq2 disjoint:', sq1.isdisjoint(sq2)) #should return false
print()
-print('sq1 disjoint:', sq1.disjoint()) #make disjoint
+print('sq1 disjoint:', sq1.disjoint()) #make disjoint
print('sq2 disjoint:', sq2.disjoint()) #make disjoint
print()
print('is square 1 universe?:', sq1.isuniverse()) #test if square is universe
print('sq2 disjoint:', sq2.disjoint()) #make disjoint
print()
print('is square 1 universe?:', sq1.isuniverse()) #test if square is universe
@@
-45,10
+50,18
@@
print('is sq4 less than sq3?:', sq4.__lt__(sq3)) # test lt(), must be a strict s
print()
print('lexographic min of sq1:', sq1.lexmin()) #test lexmin()
print('lexographic max of sq1:', sq1.lexmax()) #test lexmin()
print()
print('lexographic min of sq1:', sq1.lexmin()) #test lexmin()
print('lexographic max of sq1:', sq1.lexmax()) #test lexmin()
+print()
print('lexographic min of sq2:', sq2.lexmin()) #test lexmax()
print('lexographic max of sq2:', sq2.lexmax()) #test lexmax()
print()
print('lexographic min of sq2:', sq2.lexmin()) #test lexmax()
print('lexographic max of sq2:', sq2.lexmax()) #test lexmax()
print()
-print('Polyhedral hull of sq1 is:', sq1.polyhedral_hull())
+print('Polyhedral hull of sq1 + sq2 is:', x.polyhedral_hull()) #test polyhedral hull, returns same
+ #value as Polyhedron(sq1 + sq2)
+print()
+print('is sq1 bounded?', sq1.isbounded()) #unbounded should return True
+print('is sq5 bounded?', sq5.isbounded()) #unbounded should return False
+print()
+print('sq6:', sq6)
+print('sq6 simplified:', sq6.sample())
print()
print()
-
print('is sq1 bounded?', sq1.isbounded(
))
-print('
is sq5 bounded?', sq5.isbounded())
+
#print(u.drop_dims(' '
))
+print('
sq7 with out constraints involving y and a', sq7.drop_dims('y a')) #drops dims that are passed