Linpy Examples ============== Creating a Polyhedron ----------------- To create any polyhedron, first define the symbols used. Then use the polyhedron functions to define the constraints for the polyhedron. This example creates a square. >>> from pypol import * >>> x, y = symbols('x y') >>> # define the constraints of the polyhedron >>> square1 = Le(0, x) & Le(x, 2) & Le(0, y) & Le(y, 2) >>> print(square1) And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)) Urnary Operations ----------------- >>> square1.isempty() False >>> square1.isbounded() True Binary Operations ----------------- >>> square2 = Le(2, x) & Le(x, 4) & Le(2, y) & Le(y, 4) >>> square1 + square2 Or(And(Ge(x, 0), Ge(-x + 2, 0), Ge(y, 0), Ge(-y + 2, 0)), And(Ge(x - 2, 0), Ge(-x + 4, 0), Ge(y - 2, 0), Ge(-y + 4, 0))) >>> # check if square1 and square2 are disjoint >>> square1.disjoint(square2) False Plot Examples ------------- Linpy uses matplotlib plotting library to plot 2D and 3D polygons. The user has the option to pass subplots to the :meth:`plot` method. This can be a useful tool to compare polygons. Also, key word arguments can be passed such as color and the degree of transparency of a polygon. >>> import matplotlib.pyplot as plt >>> from matplotlib import pylab >>> from mpl_toolkits.mplot3d import Axes3D >>> from pypol import * >>> # define the symbols >>> x, y, z = symbols('x y z') >>> fig = plt.figure() >>> cham_plot = fig.add_subplot(2, 2, 3, projection='3d') >>> cham_plot.set_title('Chamfered cube') >>> cham = Le(0, x) & Le(x, 3) & Le(0, y) & Le(y, 3) & Le(0, z) & Le(z, 3) & Le(z - 2, x) & Le(x, z + 2) & Le(1 - z, x) & Le(x, 5 - z) & Le(z - 2, y) & Le(y, z + 2) & Le(1 - z, y) & Le(y, 5 - z) & Le(y - 2, x) & Le(x, y + 2) & Le(1 - y, x) & Le(x, 5 - y) >>> cham.plot(cham_plot, facecolors=(1, 0, 0, 0.75)) >>> pylab.show() .. figure:: images/cube.jpg :align: center The user can also inspect a polygon's vertices and the integer points included in the polygon. >>> diamond = Ge(y, x - 1) & Le(y, x + 1) & Ge(y, -x - 1) & Le(y, -x + 1) >>> diamond.vertices() [Point({x: Fraction(0, 1), y: Fraction(1, 1)}), Point({x: Fraction(-1, 1), y: Fraction(0, 1)}), Point({x: Fraction(1, 1), y: Fraction(0, 1)}), Point({x: Fraction(0, 1), y: Fraction(-1, 1)})] >>> diamond.points() [Point({x: -1, y: 0}), Point({x: 0, y: -1}), Point({x: 0, y: 0}), Point({x: 0, y: 1}), Point({x: 1, y: 0})]