f8d413ec1e4529b9b8f3a3225b36ae3ed4f3b3c8
5 from . import islhelper
7 from .islhelper
import mainctx
, libisl
8 from .geometry
import GeometricObject
, Point
9 from .linexprs
import Expression
, Rational
10 from .domains
import Domain
15 'Lt', 'Le', 'Eq', 'Ne', 'Ge', 'Gt',
20 class Polyhedron(Domain
):
30 def __new__(cls
, equalities
=None, inequalities
=None):
31 if isinstance(equalities
, str):
32 if inequalities
is not None:
33 raise TypeError('too many arguments')
34 return cls
.fromstring(equalities
)
35 elif isinstance(equalities
, GeometricObject
):
36 if inequalities
is not None:
37 raise TypeError('too many arguments')
38 return equalities
.aspolyhedron()
39 if equalities
is None:
42 for i
, equality
in enumerate(equalities
):
43 if not isinstance(equality
, Expression
):
44 raise TypeError('equalities must be linear expressions')
45 equalities
[i
] = equality
.scaleint()
46 if inequalities
is None:
49 for i
, inequality
in enumerate(inequalities
):
50 if not isinstance(inequality
, Expression
):
51 raise TypeError('inequalities must be linear expressions')
52 inequalities
[i
] = inequality
.scaleint()
53 symbols
= cls
._xsymbols
(equalities
+ inequalities
)
54 islbset
= cls
._toislbasicset
(equalities
, inequalities
, symbols
)
55 return cls
._fromislbasicset
(islbset
, symbols
)
59 return self
._equalities
62 def inequalities(self
):
63 return self
._inequalities
66 def constraints(self
):
67 return self
._constraints
75 Return this set as disjoint.
81 Return true if this set is the Universe set.
83 islbset
= self
._toislbasicset
(self
.equalities
, self
.inequalities
,
85 universe
= bool(libisl
.isl_basic_set_is_universe(islbset
))
86 libisl
.isl_basic_set_free(islbset
)
89 def aspolyhedron(self
):
91 Return polyhedral hull of this set.
95 def __contains__(self
, point
):
96 if not isinstance(point
, Point
):
97 raise TypeError('point must be a Point instance')
98 if self
.symbols
!= point
.symbols
:
99 raise ValueError('arguments must belong to the same space')
100 for equality
in self
.equalities
:
101 if equality
.subs(point
.coordinates()) != 0:
103 for inequality
in self
.inequalities
:
104 if inequality
.subs(point
.coordinates()) < 0:
108 def subs(self
, symbol
, expression
=None):
109 equalities
= [equality
.subs(symbol
, expression
)
110 for equality
in self
.equalities
]
111 inequalities
= [inequality
.subs(symbol
, expression
)
112 for inequality
in self
.inequalities
]
113 return Polyhedron(equalities
, inequalities
)
116 def _fromislbasicset(cls
, islbset
, symbols
):
117 if libisl
.isl_basic_set_is_empty(islbset
):
119 if libisl
.isl_basic_set_is_universe(islbset
):
121 islconstraints
= islhelper
.isl_basic_set_constraints(islbset
)
124 for islconstraint
in islconstraints
:
125 constant
= libisl
.isl_constraint_get_constant_val(islconstraint
)
126 constant
= islhelper
.isl_val_to_int(constant
)
128 for index
, symbol
in enumerate(symbols
):
129 coefficient
= libisl
.isl_constraint_get_coefficient_val(islconstraint
,
130 libisl
.isl_dim_set
, index
)
131 coefficient
= islhelper
.isl_val_to_int(coefficient
)
133 coefficients
[symbol
] = coefficient
134 expression
= Expression(coefficients
, constant
)
135 if libisl
.isl_constraint_is_equality(islconstraint
):
136 equalities
.append(expression
)
138 inequalities
.append(expression
)
139 libisl
.isl_basic_set_free(islbset
)
140 self
= object().__new
__(Polyhedron
)
141 self
._equalities
= tuple(equalities
)
142 self
._inequalities
= tuple(inequalities
)
143 self
._constraints
= tuple(equalities
+ inequalities
)
144 self
._symbols
= cls
._xsymbols
(self
._constraints
)
145 self
._dimension
= len(self
._symbols
)
149 def _toislbasicset(cls
, equalities
, inequalities
, symbols
):
150 dimension
= len(symbols
)
151 indices
= {symbol
: index
for index
, symbol
in enumerate(symbols
)}
152 islsp
= libisl
.isl_space_set_alloc(mainctx
, 0, dimension
)
153 islbset
= libisl
.isl_basic_set_universe(libisl
.isl_space_copy(islsp
))
154 islls
= libisl
.isl_local_space_from_space(islsp
)
155 for equality
in equalities
:
156 isleq
= libisl
.isl_equality_alloc(libisl
.isl_local_space_copy(islls
))
157 for symbol
, coefficient
in equality
.coefficients():
158 islval
= str(coefficient
).encode()
159 islval
= libisl
.isl_val_read_from_str(mainctx
, islval
)
160 index
= indices
[symbol
]
161 isleq
= libisl
.isl_constraint_set_coefficient_val(isleq
,
162 libisl
.isl_dim_set
, index
, islval
)
163 if equality
.constant
!= 0:
164 islval
= str(equality
.constant
).encode()
165 islval
= libisl
.isl_val_read_from_str(mainctx
, islval
)
166 isleq
= libisl
.isl_constraint_set_constant_val(isleq
, islval
)
167 islbset
= libisl
.isl_basic_set_add_constraint(islbset
, isleq
)
168 for inequality
in inequalities
:
169 islin
= libisl
.isl_inequality_alloc(libisl
.isl_local_space_copy(islls
))
170 for symbol
, coefficient
in inequality
.coefficients():
171 islval
= str(coefficient
).encode()
172 islval
= libisl
.isl_val_read_from_str(mainctx
, islval
)
173 index
= indices
[symbol
]
174 islin
= libisl
.isl_constraint_set_coefficient_val(islin
,
175 libisl
.isl_dim_set
, index
, islval
)
176 if inequality
.constant
!= 0:
177 islval
= str(inequality
.constant
).encode()
178 islval
= libisl
.isl_val_read_from_str(mainctx
, islval
)
179 islin
= libisl
.isl_constraint_set_constant_val(islin
, islval
)
180 islbset
= libisl
.isl_basic_set_add_constraint(islbset
, islin
)
184 def fromstring(cls
, string
):
185 domain
= Domain
.fromstring(string
)
186 if not isinstance(domain
, Polyhedron
):
187 raise ValueError('non-polyhedral expression: {!r}'.format(string
))
192 for equality
in self
.equalities
:
193 strings
.append('Eq({}, 0)'.format(equality
))
194 for inequality
in self
.inequalities
:
195 strings
.append('Ge({}, 0)'.format(inequality
))
196 if len(strings
) == 1:
199 return 'And({})'.format(', '.join(strings
))
201 def _repr_latex_(self
):
203 for equality
in self
.equalities
:
204 strings
.append('{} = 0'.format(equality
._repr
_latex
_().strip('$')))
205 for inequality
in self
.inequalities
:
206 strings
.append('{} \\ge 0'.format(inequality
._repr
_latex
_().strip('$')))
207 return '$${}$$'.format(' \\wedge '.join(strings
))
210 def fromsympy(cls
, expr
):
211 domain
= Domain
.fromsympy(expr
)
212 if not isinstance(domain
, Polyhedron
):
213 raise ValueError('non-polyhedral expression: {!r}'.format(expr
))
219 for equality
in self
.equalities
:
220 constraints
.append(sympy
.Eq(equality
.tosympy(), 0))
221 for inequality
in self
.inequalities
:
222 constraints
.append(sympy
.Ge(inequality
.tosympy(), 0))
223 return sympy
.And(*constraints
)
226 class EmptyType(Polyhedron
):
228 __slots__
= Polyhedron
.__slots
__
231 self
= object().__new
__(cls
)
232 self
._equalities
= (Rational(1),)
233 self
._inequalities
= ()
234 self
._constraints
= self
._equalities
242 def _repr_latex_(self
):
243 return '$$\\emptyset$$'
248 class UniverseType(Polyhedron
):
250 __slots__
= Polyhedron
.__slots
__
253 self
= object().__new
__(cls
)
254 self
._equalities
= ()
255 self
._inequalities
= ()
256 self
._constraints
= ()
264 def _repr_latex_(self
):
267 Universe
= UniverseType()
270 def _polymorphic(func
):
271 @functools.wraps(func
)
272 def wrapper(left
, right
):
273 if not isinstance(left
, Expression
):
274 if isinstance(left
, numbers
.Rational
):
275 left
= Rational(left
)
277 raise TypeError('left must be a a rational number '
278 'or a linear expression')
279 if not isinstance(right
, Expression
):
280 if isinstance(right
, numbers
.Rational
):
281 right
= Rational(right
)
283 raise TypeError('right must be a a rational number '
284 'or a linear expression')
285 return func(left
, right
)
291 Return true if the first set is less than the second.
293 return Polyhedron([], [right
- left
- 1])
298 Return true the first set is less than or equal to the second.
300 return Polyhedron([], [right
- left
])
305 Return true if the sets are equal.
307 return Polyhedron([left
- right
], [])
312 Return true if the sets are NOT equal.
314 return ~
Eq(left
, right
)
319 Return true if the first set is greater than the second set.
321 return Polyhedron([], [left
- right
- 1])
326 Return true if the first set is greater than or equal the second set.
328 return Polyhedron([], [left
- right
])