eff4a7ecdab8bdd5ca30a7f3fc933e03c70f7d87
1 # Copyright 2014 MINES ParisTech
3 # This file is part of LinPy.
5 # LinPy is free software: you can redistribute it and/or modify
6 # it under the terms of the GNU General Public License as published by
7 # the Free Software Foundation, either version 3 of the License, or
8 # (at your option) any later version.
10 # LinPy is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 # GNU General Public License for more details.
15 # You should have received a copy of the GNU General Public License
16 # along with LinPy. If not, see <http://www.gnu.org/licenses/>.
23 from collections
import OrderedDict
, defaultdict
, Mapping
24 from fractions
import Fraction
, gcd
29 'Symbol', 'Dummy', 'symbols',
34 def _polymorphic(func
):
35 @functools.wraps(func
)
36 def wrapper(left
, right
):
37 if isinstance(right
, LinExpr
):
38 return func(left
, right
)
39 elif isinstance(right
, numbers
.Rational
):
40 right
= Rational(right
)
41 return func(left
, right
)
48 A linear expression consists of a list of coefficient-variable pairs
49 that capture the linear terms, plus a constant term. Linear expressions
50 are used to build constraints. They are temporary objects that typically
53 Linear expressions are generally built using overloaded operators. For
54 example, if x is a Symbol, then x + 1 is an instance of LinExpr.
56 LinExpr instances are hashable, and should be treated as immutable.
59 def __new__(cls
, coefficients
=None, constant
=0):
61 Return a linear expression from a dictionary or a sequence, that maps
62 symbols to their coefficients, and a constant term. The coefficients and
63 the constant term must be rational numbers.
65 For example, the linear expression x + 2*y + 1 can be constructed using
66 one of the following instructions:
68 >>> x, y = symbols('x y')
69 >>> LinExpr({x: 1, y: 2}, 1)
70 >>> LinExpr([(x, 1), (y, 2)], 1)
72 However, it may be easier to use overloaded operators:
74 >>> x, y = symbols('x y')
77 Alternatively, linear expressions can be constructed from a string:
79 >>> LinExpr('x + 2y + 1')
81 A linear expression with a single symbol of coefficient 1 and no
82 constant term is automatically subclassed as a Symbol instance. A linear
83 expression with no symbol, only a constant term, is automatically
84 subclassed as a Rational instance.
86 if isinstance(coefficients
, str):
88 raise TypeError('too many arguments')
89 return LinExpr
.fromstring(coefficients
)
90 if coefficients
is None:
91 return Rational(constant
)
92 if isinstance(coefficients
, Mapping
):
93 coefficients
= coefficients
.items()
94 coefficients
= list(coefficients
)
95 for symbol
, coefficient
in coefficients
:
96 if not isinstance(symbol
, Symbol
):
97 raise TypeError('symbols must be Symbol instances')
98 if not isinstance(coefficient
, numbers
.Rational
):
99 raise TypeError('coefficients must be rational numbers')
100 if not isinstance(constant
, numbers
.Rational
):
101 raise TypeError('constant must be a rational number')
102 if len(coefficients
) == 0:
103 return Rational(constant
)
104 if len(coefficients
) == 1 and constant
== 0:
105 symbol
, coefficient
= coefficients
[0]
108 coefficients
= [(symbol
, Fraction(coefficient
))
109 for symbol
, coefficient
in coefficients
if coefficient
!= 0]
110 coefficients
.sort(key
=lambda item
: item
[0].sortkey())
111 self
= object().__new
__(cls
)
112 self
._coefficients
= OrderedDict(coefficients
)
113 self
._constant
= Fraction(constant
)
114 self
._symbols
= tuple(self
._coefficients
)
115 self
._dimension
= len(self
._symbols
)
118 def coefficient(self
, symbol
):
120 Return the coefficient value of the given symbol, or 0 if the symbol
121 does not appear in the expression.
123 if not isinstance(symbol
, Symbol
):
124 raise TypeError('symbol must be a Symbol instance')
125 return self
._coefficients
.get(symbol
, Fraction(0))
127 __getitem__
= coefficient
129 def coefficients(self
):
131 Iterate over the pairs (symbol, value) of linear terms in the
132 expression. The constant term is ignored.
134 yield from self
._coefficients
.items()
139 The constant term of the expression.
141 return self
._constant
146 The tuple of symbols present in the expression, sorted according to
154 The dimension of the expression, i.e. the number of symbols present in
157 return self
._dimension
160 return hash((tuple(self
._coefficients
.items()), self
._constant
))
162 def isconstant(self
):
164 Return True if the expression only consists of a constant term. In this
165 case, it is a Rational instance.
171 Return True if an expression only consists of a symbol with coefficient
172 1. In this case, it is a Symbol instance.
178 Iterate over the coefficient values in the expression, and the constant
181 yield from self
._coefficients
.values()
194 def __add__(self
, other
):
196 Return the sum of two linear expressions.
198 coefficients
= defaultdict(Fraction
, self
._coefficients
)
199 for symbol
, coefficient
in other
._coefficients
.items():
200 coefficients
[symbol
] += coefficient
201 constant
= self
._constant
+ other
._constant
202 return LinExpr(coefficients
, constant
)
207 def __sub__(self
, other
):
209 Return the difference between two linear expressions.
211 coefficients
= defaultdict(Fraction
, self
._coefficients
)
212 for symbol
, coefficient
in other
._coefficients
.items():
213 coefficients
[symbol
] -= coefficient
214 constant
= self
._constant
- other
._constant
215 return LinExpr(coefficients
, constant
)
218 def __rsub__(self
, other
):
221 def __mul__(self
, other
):
223 Return the product of the linear expression by a rational.
225 if isinstance(other
, numbers
.Rational
):
226 coefficients
= ((symbol
, coefficient
* other
)
227 for symbol
, coefficient
in self
._coefficients
.items())
228 constant
= self
._constant
* other
229 return LinExpr(coefficients
, constant
)
230 return NotImplemented
234 def __truediv__(self
, other
):
236 Return the quotient of the linear expression by a rational.
238 if isinstance(other
, numbers
.Rational
):
239 coefficients
= ((symbol
, coefficient
/ other
)
240 for symbol
, coefficient
in self
._coefficients
.items())
241 constant
= self
._constant
/ other
242 return LinExpr(coefficients
, constant
)
243 return NotImplemented
246 def __eq__(self
, other
):
248 Test whether two linear expressions are equal. Unlike methods
249 LinExpr.__lt__(), LinExpr.__le__(), LinExpr.__ge__(), LinExpr.__gt__(),
250 the result is a boolean value, not a polyhedron. To express that two
251 linear expressions are equal or not equal, use functions Eq() and Ne()
254 return self
._coefficients
== other
._coefficients
and \
255 self
._constant
== other
._constant
258 def __lt__(self
, other
):
259 from .polyhedra
import Polyhedron
260 return Polyhedron([], [other
- self
- 1])
263 def __le__(self
, other
):
264 from .polyhedra
import Polyhedron
265 return Polyhedron([], [other
- self
])
268 def __ge__(self
, other
):
269 from .polyhedra
import Polyhedron
270 return Polyhedron([], [self
- other
])
273 def __gt__(self
, other
):
274 from .polyhedra
import Polyhedron
275 return Polyhedron([], [self
- other
- 1])
279 Return the expression multiplied by its lowest common denominator to
280 make all values integer.
282 lcd
= functools
.reduce(lambda a
, b
: a
*b
// gcd(a
, b
),
283 [value
.denominator
for value
in self
.values()])
286 def subs(self
, symbol
, expression
=None):
288 Substitute the given symbol by an expression and return the resulting
289 expression. Raise TypeError if the resulting expression is not linear.
291 >>> x, y = symbols('x y')
296 To perform multiple substitutions at once, pass a sequence or a
297 dictionary of (old, new) pairs to subs.
299 >>> e.subs({x: y, y: x})
302 if expression
is None:
303 substitutions
= dict(symbol
)
305 substitutions
= {symbol
: expression
}
306 for symbol
in substitutions
:
307 if not isinstance(symbol
, Symbol
):
308 raise TypeError('symbols must be Symbol instances')
309 result
= self
._constant
310 for symbol
, coefficient
in self
._coefficients
.items():
311 expression
= substitutions
.get(symbol
, symbol
)
312 result
+= coefficient
* expression
316 def _fromast(cls
, node
):
317 if isinstance(node
, ast
.Module
) and len(node
.body
) == 1:
318 return cls
._fromast
(node
.body
[0])
319 elif isinstance(node
, ast
.Expr
):
320 return cls
._fromast
(node
.value
)
321 elif isinstance(node
, ast
.Name
):
322 return Symbol(node
.id)
323 elif isinstance(node
, ast
.Num
):
324 return Rational(node
.n
)
325 elif isinstance(node
, ast
.UnaryOp
) and isinstance(node
.op
, ast
.USub
):
326 return -cls
._fromast
(node
.operand
)
327 elif isinstance(node
, ast
.BinOp
):
328 left
= cls
._fromast
(node
.left
)
329 right
= cls
._fromast
(node
.right
)
330 if isinstance(node
.op
, ast
.Add
):
332 elif isinstance(node
.op
, ast
.Sub
):
334 elif isinstance(node
.op
, ast
.Mult
):
336 elif isinstance(node
.op
, ast
.Div
):
338 raise SyntaxError('invalid syntax')
340 _RE_NUM_VAR
= re
.compile(r
'(\d+|\))\s*([^\W\d]\w*|\()')
343 def fromstring(cls
, string
):
345 Create an expression from a string. Raise SyntaxError if the string is
346 not properly formatted.
348 # Add implicit multiplication operators, e.g. '5x' -> '5*x'.
349 string
= LinExpr
._RE
_NUM
_VAR
.sub(r
'\1*\2', string
)
350 tree
= ast
.parse(string
, 'eval')
351 expr
= cls
._fromast
(tree
)
352 if not isinstance(expr
, cls
):
353 raise SyntaxError('invalid syntax')
358 for i
, (symbol
, coefficient
) in enumerate(self
.coefficients()):
362 elif coefficient
== -1:
363 string
+= '-' if i
== 0 else ' - '
365 string
+= '{}*'.format(coefficient
)
366 elif coefficient
> 0:
367 string
+= ' + {}*'.format(coefficient
)
369 string
+= ' - {}*'.format(-coefficient
)
370 string
+= '{}'.format(symbol
)
371 constant
= self
.constant
373 string
+= '{}'.format(constant
)
375 string
+= ' + {}'.format(constant
)
377 string
+= ' - {}'.format(-constant
)
380 def _repr_latex_(self
):
382 for i
, (symbol
, coefficient
) in enumerate(self
.coefficients()):
386 elif coefficient
== -1:
387 string
+= '-' if i
== 0 else ' - '
389 string
+= '{}'.format(coefficient
._repr
_latex
_().strip('$'))
390 elif coefficient
> 0:
391 string
+= ' + {}'.format(coefficient
._repr
_latex
_().strip('$'))
392 elif coefficient
< 0:
393 string
+= ' - {}'.format((-coefficient
)._repr
_latex
_().strip('$'))
394 string
+= '{}'.format(symbol
._repr
_latex
_().strip('$'))
395 constant
= self
.constant
397 string
+= '{}'.format(constant
._repr
_latex
_().strip('$'))
399 string
+= ' + {}'.format(constant
._repr
_latex
_().strip('$'))
401 string
+= ' - {}'.format((-constant
)._repr
_latex
_().strip('$'))
402 return '$${}$$'.format(string
)
404 def _parenstr(self
, always
=False):
406 if not always
and (self
.isconstant() or self
.issymbol()):
409 return '({})'.format(string
)
412 def fromsympy(cls
, expr
):
414 Create a linear expression from a SymPy expression. Raise TypeError is
415 the sympy expression is not linear.
420 for symbol
, coefficient
in expr
.as_coefficients_dict().items():
421 coefficient
= Fraction(coefficient
.p
, coefficient
.q
)
422 if symbol
== sympy
.S
.One
:
423 constant
= coefficient
424 elif isinstance(symbol
, sympy
.Dummy
):
425 # We cannot properly convert dummy symbols with respect to
427 raise TypeError('cannot convert dummy symbols')
428 elif isinstance(symbol
, sympy
.Symbol
):
429 symbol
= Symbol(symbol
.name
)
430 coefficients
.append((symbol
, coefficient
))
432 raise TypeError('non-linear expression: {!r}'.format(expr
))
433 expr
= LinExpr(coefficients
, constant
)
434 if not isinstance(expr
, cls
):
435 raise TypeError('cannot convert to a {} instance'.format(cls
.__name
__))
440 Convert the linear expression to a SymPy expression.
444 for symbol
, coefficient
in self
.coefficients():
445 term
= coefficient
* sympy
.Symbol(symbol
.name
)
447 expr
+= self
.constant
451 class Symbol(LinExpr
):
453 Symbols are the basic components to build expressions and constraints.
454 They correspond to mathematical variables. Symbols are instances of
455 class LinExpr and inherit its functionalities.
457 Two instances of Symbol are equal if they have the same name.
467 def __new__(cls
, name
):
469 Return a symbol with the name string given in argument.
471 if not isinstance(name
, str):
472 raise TypeError('name must be a string')
473 node
= ast
.parse(name
)
475 name
= node
.body
[0].value
.id
476 except (AttributeError, SyntaxError):
477 raise SyntaxError('invalid syntax')
478 self
= object().__new
__(cls
)
480 self
._constant
= Fraction(0)
481 self
._symbols
= (self
,)
486 def _coefficients(self
):
487 # This is not implemented as an attribute, because __hash__ is not
488 # callable in __new__ in class Dummy.
489 return {self
: Fraction(1)}
494 The name of the symbol.
499 return hash(self
.sortkey())
503 Return a sorting key for the symbol. It is useful to sort a list of
504 symbols in a consistent order, as comparison functions are overridden
505 (see the documentation of class LinExpr).
507 >>> sort(symbols, key=Symbol.sortkey)
514 def __eq__(self
, other
):
515 if isinstance(other
, Symbol
):
516 return self
.sortkey() == other
.sortkey()
517 return NotImplemented
521 Return a new Dummy symbol instance with the same name.
523 return Dummy(self
.name
)
528 def _repr_latex_(self
):
529 return '$${}$$'.format(self
.name
)
534 This function returns a tuple of symbols whose names are taken from a comma
535 or whitespace delimited string, or a sequence of strings. It is useful to
536 define several symbols at once.
538 >>> x, y = symbols('x y')
539 >>> x, y = symbols('x, y')
540 >>> x, y = symbols(['x', 'y'])
542 if isinstance(names
, str):
543 names
= names
.replace(',', ' ').split()
544 return tuple(Symbol(name
) for name
in names
)
549 A variation of Symbol in which all symbols are unique and identified by
550 an internal count index. If a name is not supplied then a string value
551 of the count index will be used. This is useful when a unique, temporary
552 variable is needed and the name of the variable used in the expression
555 Unlike Symbol, Dummy instances with the same name are not equal:
558 >>> x1, x2 = Dummy('x'), Dummy('x')
569 def __new__(cls
, name
=None):
571 Return a fresh dummy symbol with the name string given in argument.
574 name
= 'Dummy_{}'.format(Dummy
._count
)
575 self
= super().__new
__(cls
, name
)
576 self
._index
= Dummy
._count
581 return hash(self
.sortkey())
584 return self
._name
, self
._index
587 return '_{}'.format(self
.name
)
589 def _repr_latex_(self
):
590 return '$${}_{{{}}}$$'.format(self
.name
, self
._index
)
593 class Rational(LinExpr
, Fraction
):
595 A particular case of linear expressions are rational values, i.e. linear
596 expressions consisting only of a constant term, with no symbol. They are
597 implemented by the Rational class, that inherits from both LinExpr and
598 fractions.Fraction classes.
606 ) + Fraction
.__slots
__
608 def __new__(cls
, numerator
=0, denominator
=None):
609 self
= object().__new
__(cls
)
610 self
._coefficients
= {}
611 self
._constant
= Fraction(numerator
, denominator
)
614 self
._numerator
= self
._constant
.numerator
615 self
._denominator
= self
._constant
.denominator
619 return Fraction
.__hash
__(self
)
625 def isconstant(self
):
629 return Fraction
.__bool
__(self
)
632 if self
.denominator
== 1:
633 return '{!r}'.format(self
.numerator
)
635 return '{!r}/{!r}'.format(self
.numerator
, self
.denominator
)
637 def _repr_latex_(self
):
638 if self
.denominator
== 1:
639 return '$${}$$'.format(self
.numerator
)
640 elif self
.numerator
< 0:
641 return '$$-\\frac{{{}}}{{{}}}$$'.format(-self
.numerator
,
644 return '$$\\frac{{{}}}{{{}}}$$'.format(self
.numerator
,