c1006988a8b5cc5d2419a3429b3eec9ed9831b1f
1 # Copyright 2014 MINES ParisTech
3 # This file is part of LinPy.
5 # LinPy is free software: you can redistribute it and/or modify
6 # it under the terms of the GNU General Public License as published by
7 # the Free Software Foundation, either version 3 of the License, or
8 # (at your option) any later version.
10 # LinPy is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 # GNU General Public License for more details.
15 # You should have received a copy of the GNU General Public License
16 # along with LinPy. If not, see <http://www.gnu.org/licenses/>.
23 from collections
import OrderedDict
, defaultdict
, Mapping
24 from fractions
import Fraction
, gcd
29 'Symbol', 'Dummy', 'symbols',
34 def _polymorphic(func
):
35 @functools.wraps(func
)
36 def wrapper(left
, right
):
37 if isinstance(right
, LinExpr
):
38 return func(left
, right
)
39 elif isinstance(right
, numbers
.Rational
):
40 right
= Rational(right
)
41 return func(left
, right
)
48 A linear expression consists of a list of coefficient-variable pairs
49 that capture the linear terms, plus a constant term. Linear expressions
50 are used to build constraints. They are temporary objects that typically
53 Linear expressions are generally built using overloaded operators. For
54 example, if x is a Symbol, then x + 1 is an instance of LinExpr.
56 LinExpr instances are hashable, and should be treated as immutable.
59 def __new__(cls
, coefficients
=None, constant
=0):
61 Return a linear expression from a dictionary or a sequence, that maps
62 symbols to their coefficients, and a constant term. The coefficients and
63 the constant term must be rational numbers.
65 For example, the linear expression x + 2y + 1 can be constructed using
66 one of the following instructions:
68 >>> x, y = symbols('x y')
69 >>> LinExpr({x: 1, y: 2}, 1)
70 >>> LinExpr([(x, 1), (y, 2)], 1)
72 However, it may be easier to use overloaded operators:
74 >>> x, y = symbols('x y')
77 Alternatively, linear expressions can be constructed from a string:
79 >>> LinExpr('x + 2*y + 1')
81 A linear expression with a single symbol of coefficient 1 and no
82 constant term is automatically subclassed as a Symbol instance. A linear
83 expression with no symbol, only a constant term, is automatically
84 subclassed as a Rational instance.
86 if isinstance(coefficients
, str):
88 raise TypeError('too many arguments')
89 return LinExpr
.fromstring(coefficients
)
90 if coefficients
is None:
91 return Rational(constant
)
92 if isinstance(coefficients
, Mapping
):
93 coefficients
= coefficients
.items()
94 coefficients
= list(coefficients
)
95 for symbol
, coefficient
in coefficients
:
96 if not isinstance(symbol
, Symbol
):
97 raise TypeError('symbols must be Symbol instances')
98 if not isinstance(coefficient
, numbers
.Rational
):
99 raise TypeError('coefficients must be rational numbers')
100 if not isinstance(constant
, numbers
.Rational
):
101 raise TypeError('constant must be a rational number')
102 if len(coefficients
) == 0:
103 return Rational(constant
)
104 if len(coefficients
) == 1 and constant
== 0:
105 symbol
, coefficient
= coefficients
[0]
108 coefficients
= [(symbol
, Fraction(coefficient
))
109 for symbol
, coefficient
in coefficients
if coefficient
!= 0]
110 coefficients
.sort(key
=lambda item
: item
[0].sortkey())
111 self
= object().__new
__(cls
)
112 self
._coefficients
= OrderedDict(coefficients
)
113 self
._constant
= Fraction(constant
)
114 self
._symbols
= tuple(self
._coefficients
)
115 self
._dimension
= len(self
._symbols
)
118 def coefficient(self
, symbol
):
120 Return the coefficient value of the given symbol, or 0 if the symbol
121 does not appear in the expression.
123 if not isinstance(symbol
, Symbol
):
124 raise TypeError('symbol must be a Symbol instance')
125 return self
._coefficients
.get(symbol
, Fraction(0))
127 __getitem__
= coefficient
129 def coefficients(self
):
131 Iterate over the pairs (symbol, value) of linear terms in the
132 expression. The constant term is ignored.
134 yield from self
._coefficients
.items()
139 The constant term of the expression.
141 return self
._constant
146 The tuple of symbols present in the expression, sorted according to
154 The dimension of the expression, i.e. the number of symbols present in
157 return self
._dimension
160 return hash((tuple(self
._coefficients
.items()), self
._constant
))
162 def isconstant(self
):
164 Return True if the expression only consists of a constant term. In this
165 case, it is a Rational instance.
171 Return True if an expression only consists of a symbol with coefficient
172 1. In this case, it is a Symbol instance.
178 Iterate over the coefficient values in the expression, and the constant
181 yield from self
._coefficients
.values()
194 def __add__(self
, other
):
196 Return the sum of two linear expressions.
198 coefficients
= defaultdict(Fraction
, self
._coefficients
)
199 for symbol
, coefficient
in other
._coefficients
.items():
200 coefficients
[symbol
] += coefficient
201 constant
= self
._constant
+ other
._constant
202 return LinExpr(coefficients
, constant
)
207 def __sub__(self
, other
):
209 Return the difference between two linear expressions.
211 coefficients
= defaultdict(Fraction
, self
._coefficients
)
212 for symbol
, coefficient
in other
._coefficients
.items():
213 coefficients
[symbol
] -= coefficient
214 constant
= self
._constant
- other
._constant
215 return LinExpr(coefficients
, constant
)
218 def __rsub__(self
, other
):
221 def __mul__(self
, other
):
223 Return the product of the linear expression by a rational.
225 if isinstance(other
, numbers
.Rational
):
226 coefficients
= ((symbol
, coefficient
* other
)
227 for symbol
, coefficient
in self
._coefficients
.items())
228 constant
= self
._constant
* other
229 return LinExpr(coefficients
, constant
)
230 return NotImplemented
234 def __truediv__(self
, other
):
236 Return the quotient of the linear expression by a rational.
238 if isinstance(other
, numbers
.Rational
):
239 coefficients
= ((symbol
, coefficient
/ other
)
240 for symbol
, coefficient
in self
._coefficients
.items())
241 constant
= self
._constant
/ other
242 return LinExpr(coefficients
, constant
)
243 return NotImplemented
246 def __eq__(self
, other
):
248 Test whether two linear expressions are equal.
250 if isinstance(other
, LinExpr
):
251 return self
._coefficients
== other
._coefficients
and \
252 self
._constant
== other
._constant
253 return NotImplemented
255 def __le__(self
, other
):
256 from .polyhedra
import Le
257 return Le(self
, other
)
259 def __lt__(self
, other
):
260 from .polyhedra
import Lt
261 return Lt(self
, other
)
263 def __ge__(self
, other
):
264 from .polyhedra
import Ge
265 return Ge(self
, other
)
267 def __gt__(self
, other
):
268 from .polyhedra
import Gt
269 return Gt(self
, other
)
273 Return the expression multiplied by its lowest common denominator to
274 make all values integer.
276 lcd
= functools
.reduce(lambda a
, b
: a
*b
// gcd(a
, b
),
277 [value
.denominator
for value
in self
.values()])
280 def subs(self
, symbol
, expression
=None):
282 Substitute the given symbol by an expression and return the resulting
283 expression. Raise TypeError if the resulting expression is not linear.
285 >>> x, y = symbols('x y')
290 To perform multiple substitutions at once, pass a sequence or a
291 dictionary of (old, new) pairs to subs.
293 >>> e.subs({x: y, y: x})
296 if expression
is None:
297 substitutions
= dict(symbol
)
299 substitutions
= {symbol
: expression
}
300 for symbol
in substitutions
:
301 if not isinstance(symbol
, Symbol
):
302 raise TypeError('symbols must be Symbol instances')
303 result
= self
._constant
304 for symbol
, coefficient
in self
._coefficients
.items():
305 expression
= substitutions
.get(symbol
, symbol
)
306 result
+= coefficient
* expression
310 def _fromast(cls
, node
):
311 if isinstance(node
, ast
.Module
) and len(node
.body
) == 1:
312 return cls
._fromast
(node
.body
[0])
313 elif isinstance(node
, ast
.Expr
):
314 return cls
._fromast
(node
.value
)
315 elif isinstance(node
, ast
.Name
):
316 return Symbol(node
.id)
317 elif isinstance(node
, ast
.Num
):
318 return Rational(node
.n
)
319 elif isinstance(node
, ast
.UnaryOp
) and isinstance(node
.op
, ast
.USub
):
320 return -cls
._fromast
(node
.operand
)
321 elif isinstance(node
, ast
.BinOp
):
322 left
= cls
._fromast
(node
.left
)
323 right
= cls
._fromast
(node
.right
)
324 if isinstance(node
.op
, ast
.Add
):
326 elif isinstance(node
.op
, ast
.Sub
):
328 elif isinstance(node
.op
, ast
.Mult
):
330 elif isinstance(node
.op
, ast
.Div
):
332 raise SyntaxError('invalid syntax')
334 _RE_NUM_VAR
= re
.compile(r
'(\d+|\))\s*([^\W\d]\w*|\()')
337 def fromstring(cls
, string
):
339 Create an expression from a string. Raise SyntaxError if the string is
340 not properly formatted.
342 # add implicit multiplication operators, e.g. '5x' -> '5*x'
343 string
= LinExpr
._RE
_NUM
_VAR
.sub(r
'\1*\2', string
)
344 tree
= ast
.parse(string
, 'eval')
345 expr
= cls
._fromast
(tree
)
346 if not isinstance(expr
, cls
):
347 raise SyntaxError('invalid syntax')
352 for i
, (symbol
, coefficient
) in enumerate(self
.coefficients()):
356 elif coefficient
== -1:
357 string
+= '-' if i
== 0 else ' - '
359 string
+= '{}*'.format(coefficient
)
360 elif coefficient
> 0:
361 string
+= ' + {}*'.format(coefficient
)
363 string
+= ' - {}*'.format(-coefficient
)
364 string
+= '{}'.format(symbol
)
365 constant
= self
.constant
367 string
+= '{}'.format(constant
)
369 string
+= ' + {}'.format(constant
)
371 string
+= ' - {}'.format(-constant
)
374 def _repr_latex_(self
):
376 for i
, (symbol
, coefficient
) in enumerate(self
.coefficients()):
380 elif coefficient
== -1:
381 string
+= '-' if i
== 0 else ' - '
383 string
+= '{}'.format(coefficient
._repr
_latex
_().strip('$'))
384 elif coefficient
> 0:
385 string
+= ' + {}'.format(coefficient
._repr
_latex
_().strip('$'))
386 elif coefficient
< 0:
387 string
+= ' - {}'.format((-coefficient
)._repr
_latex
_().strip('$'))
388 string
+= '{}'.format(symbol
._repr
_latex
_().strip('$'))
389 constant
= self
.constant
391 string
+= '{}'.format(constant
._repr
_latex
_().strip('$'))
393 string
+= ' + {}'.format(constant
._repr
_latex
_().strip('$'))
395 string
+= ' - {}'.format((-constant
)._repr
_latex
_().strip('$'))
396 return '$${}$$'.format(string
)
398 def _parenstr(self
, always
=False):
400 if not always
and (self
.isconstant() or self
.issymbol()):
403 return '({})'.format(string
)
406 def fromsympy(cls
, expr
):
408 Create a linear expression from a sympy expression. Raise TypeError is
409 the sympy expression is not linear.
414 for symbol
, coefficient
in expr
.as_coefficients_dict().items():
415 coefficient
= Fraction(coefficient
.p
, coefficient
.q
)
416 if symbol
== sympy
.S
.One
:
417 constant
= coefficient
418 elif isinstance(symbol
, sympy
.Dummy
):
419 # we cannot properly convert dummy symbols
420 raise TypeError('cannot convert dummy symbols')
421 elif isinstance(symbol
, sympy
.Symbol
):
422 symbol
= Symbol(symbol
.name
)
423 coefficients
.append((symbol
, coefficient
))
425 raise TypeError('non-linear expression: {!r}'.format(expr
))
426 expr
= LinExpr(coefficients
, constant
)
427 if not isinstance(expr
, cls
):
428 raise TypeError('cannot convert to a {} instance'.format(cls
.__name
__))
433 Convert the linear expression to a sympy expression.
437 for symbol
, coefficient
in self
.coefficients():
438 term
= coefficient
* sympy
.Symbol(symbol
.name
)
440 expr
+= self
.constant
444 class Symbol(LinExpr
):
446 Symbols are the basic components to build expressions and constraints.
447 They correspond to mathematical variables. Symbols are instances of
448 class LinExpr and inherit its functionalities.
450 Two instances of Symbol are equal if they have the same name.
460 def __new__(cls
, name
):
462 Return a symbol with the name string given in argument.
464 if not isinstance(name
, str):
465 raise TypeError('name must be a string')
466 node
= ast
.parse(name
)
468 name
= node
.body
[0].value
.id
469 except (AttributeError, SyntaxError):
470 raise SyntaxError('invalid syntax')
471 self
= object().__new
__(cls
)
473 self
._constant
= Fraction(0)
474 self
._symbols
= (self
,)
479 def _coefficients(self
):
480 return {self
: Fraction(1)}
485 The name of the symbol.
490 return hash(self
.sortkey())
494 Return a sorting key for the symbol. It is useful to sort a list of
495 symbols in a consistent order, as comparison functions are overridden
496 (see the documentation of class LinExpr).
498 >>> sort(symbols, key=Symbol.sortkey)
505 def __eq__(self
, other
):
506 if isinstance(other
, Symbol
):
507 return self
.sortkey() == other
.sortkey()
508 return NotImplemented
512 Return a new Dummy symbol instance with the same name.
514 return Dummy(self
.name
)
519 def _repr_latex_(self
):
520 return '$${}$$'.format(self
.name
)
525 This function returns a tuple of symbols whose names are taken from a comma
526 or whitespace delimited string, or a sequence of strings. It is useful to
527 define several symbols at once.
529 >>> x, y = symbols('x y')
530 >>> x, y = symbols('x, y')
531 >>> x, y = symbols(['x', 'y'])
533 if isinstance(names
, str):
534 names
= names
.replace(',', ' ').split()
535 return tuple(Symbol(name
) for name
in names
)
540 A variation of Symbol in which all symbols are unique and identified by
541 an internal count index. If a name is not supplied then a string value
542 of the count index will be used. This is useful when a unique, temporary
543 variable is needed and the name of the variable used in the expression
546 Unlike Symbol, Dummy instances with the same name are not equal:
549 >>> x1, x2 = Dummy('x'), Dummy('x')
560 def __new__(cls
, name
=None):
562 Return a fresh dummy symbol with the name string given in argument.
565 name
= 'Dummy_{}'.format(Dummy
._count
)
566 self
= super().__new
__(cls
, name
)
567 self
._index
= Dummy
._count
572 return hash(self
.sortkey())
575 return self
._name
, self
._index
578 return '_{}'.format(self
.name
)
580 def _repr_latex_(self
):
581 return '$${}_{{{}}}$$'.format(self
.name
, self
._index
)
584 class Rational(LinExpr
, Fraction
):
586 A particular case of linear expressions are rational values, i.e. linear
587 expressions consisting only of a constant term, with no symbol. They are
588 implemented by the Rational class, that inherits from both LinExpr and
589 fractions.Fraction classes.
597 ) + Fraction
.__slots
__
599 def __new__(cls
, numerator
=0, denominator
=None):
600 self
= object().__new
__(cls
)
601 self
._coefficients
= {}
602 self
._constant
= Fraction(numerator
, denominator
)
605 self
._numerator
= self
._constant
.numerator
606 self
._denominator
= self
._constant
.denominator
610 return Fraction
.__hash
__(self
)
616 def isconstant(self
):
620 return Fraction
.__bool
__(self
)
623 if self
.denominator
== 1:
624 return '{!r}'.format(self
.numerator
)
626 return '{!r}/{!r}'.format(self
.numerator
, self
.denominator
)
628 def _repr_latex_(self
):
629 if self
.denominator
== 1:
630 return '$${}$$'.format(self
.numerator
)
631 elif self
.numerator
< 0:
632 return '$$-\\frac{{{}}}{{{}}}$$'.format(-self
.numerator
,
635 return '$$\\frac{{{}}}{{{}}}$$'.format(self
.numerator
,