a6adeda72cca311444022f944d3ddb7d0f0ad0b0
4 from . import islhelper
6 from .islhelper
import mainctx
, libisl
7 from .linexprs
import Expression
, Rational
8 from .domains
import Domain
13 'Lt', 'Le', 'Eq', 'Ne', 'Ge', 'Gt',
18 class Polyhedron(Domain
):
28 def __new__(cls
, equalities
=None, inequalities
=None):
29 if isinstance(equalities
, str):
30 if inequalities
is not None:
31 raise TypeError('too many arguments')
32 return cls
.fromstring(equalities
)
33 elif isinstance(equalities
, Polyhedron
):
34 if inequalities
is not None:
35 raise TypeError('too many arguments')
37 elif isinstance(equalities
, Domain
):
38 if inequalities
is not None:
39 raise TypeError('too many arguments')
40 return equalities
.aspolyhedron()
41 if equalities
is None:
44 for i
, equality
in enumerate(equalities
):
45 if not isinstance(equality
, Expression
):
46 raise TypeError('equalities must be linear expressions')
47 equalities
[i
] = equality
.scaleint()
48 if inequalities
is None:
51 for i
, inequality
in enumerate(inequalities
):
52 if not isinstance(inequality
, Expression
):
53 raise TypeError('inequalities must be linear expressions')
54 inequalities
[i
] = inequality
.scaleint()
55 symbols
= cls
._xsymbols
(equalities
+ inequalities
)
56 islbset
= cls
._toislbasicset
(equalities
, inequalities
, symbols
)
57 return cls
._fromislbasicset
(islbset
, symbols
)
61 return self
._equalities
64 def inequalities(self
):
65 return self
._inequalities
68 def constraints(self
):
69 return self
._constraints
79 islbset
= self
._toislbasicset
(self
.equalities
, self
.inequalities
,
81 universe
= bool(libisl
.isl_basic_set_is_universe(islbset
))
82 libisl
.isl_basic_set_free(islbset
)
85 def aspolyhedron(self
):
89 def _fromislbasicset(cls
, islbset
, symbols
):
90 islconstraints
= islhelper
.isl_basic_set_constraints(islbset
)
93 for islconstraint
in islconstraints
:
94 constant
= libisl
.isl_constraint_get_constant_val(islconstraint
)
95 constant
= islhelper
.isl_val_to_int(constant
)
97 for index
, symbol
in enumerate(symbols
):
98 coefficient
= libisl
.isl_constraint_get_coefficient_val(islconstraint
,
99 libisl
.isl_dim_set
, index
)
100 coefficient
= islhelper
.isl_val_to_int(coefficient
)
102 coefficients
[symbol
] = coefficient
103 expression
= Expression(coefficients
, constant
)
104 if libisl
.isl_constraint_is_equality(islconstraint
):
105 equalities
.append(expression
)
107 inequalities
.append(expression
)
108 libisl
.isl_basic_set_free(islbset
)
109 self
= object().__new
__(Polyhedron
)
110 self
._equalities
= tuple(equalities
)
111 self
._inequalities
= tuple(inequalities
)
112 self
._constraints
= tuple(equalities
+ inequalities
)
113 self
._symbols
= cls
._xsymbols
(self
._constraints
)
114 self
._dimension
= len(self
._symbols
)
118 def _toislbasicset(cls
, equalities
, inequalities
, symbols
):
119 dimension
= len(symbols
)
120 indices
= {symbol
: index
for index
, symbol
in enumerate(symbols
)}
121 islsp
= libisl
.isl_space_set_alloc(mainctx
, 0, dimension
)
122 islbset
= libisl
.isl_basic_set_universe(libisl
.isl_space_copy(islsp
))
123 islls
= libisl
.isl_local_space_from_space(islsp
)
124 for equality
in equalities
:
125 isleq
= libisl
.isl_equality_alloc(libisl
.isl_local_space_copy(islls
))
126 for symbol
, coefficient
in equality
.coefficients():
127 islval
= str(coefficient
).encode()
128 islval
= libisl
.isl_val_read_from_str(mainctx
, islval
)
129 index
= indices
[symbol
]
130 isleq
= libisl
.isl_constraint_set_coefficient_val(isleq
,
131 libisl
.isl_dim_set
, index
, islval
)
132 if equality
.constant
!= 0:
133 islval
= str(equality
.constant
).encode()
134 islval
= libisl
.isl_val_read_from_str(mainctx
, islval
)
135 isleq
= libisl
.isl_constraint_set_constant_val(isleq
, islval
)
136 islbset
= libisl
.isl_basic_set_add_constraint(islbset
, isleq
)
137 for inequality
in inequalities
:
138 islin
= libisl
.isl_inequality_alloc(libisl
.isl_local_space_copy(islls
))
139 for symbol
, coefficient
in inequality
.coefficients():
140 islval
= str(coefficient
).encode()
141 islval
= libisl
.isl_val_read_from_str(mainctx
, islval
)
142 index
= indices
[symbol
]
143 islin
= libisl
.isl_constraint_set_coefficient_val(islin
,
144 libisl
.isl_dim_set
, index
, islval
)
145 if inequality
.constant
!= 0:
146 islval
= str(inequality
.constant
).encode()
147 islval
= libisl
.isl_val_read_from_str(mainctx
, islval
)
148 islin
= libisl
.isl_constraint_set_constant_val(islin
, islval
)
149 islbset
= libisl
.isl_basic_set_add_constraint(islbset
, islin
)
153 def fromstring(cls
, string
):
154 domain
= Domain
.fromstring(string
)
155 if not isinstance(domain
, Polyhedron
):
156 raise ValueError('non-polyhedral expression: {!r}'.format(string
))
162 elif self
.isuniverse():
166 for equality
in self
.equalities
:
167 strings
.append('0 == {}'.format(equality
))
168 for inequality
in self
.inequalities
:
169 strings
.append('0 <= {}'.format(inequality
))
170 if len(strings
) == 1:
173 return 'And({})'.format(', '.join(strings
))
176 def fromsympy(cls
, expr
):
177 domain
= Domain
.fromsympy(expr
)
178 if not isinstance(domain
, Polyhedron
):
179 raise ValueError('non-polyhedral expression: {!r}'.format(expr
))
185 for equality
in self
.equalities
:
186 constraints
.append(sympy
.Eq(equality
.tosympy(), 0))
187 for inequality
in self
.inequalities
:
188 constraints
.append(sympy
.Ge(inequality
.tosympy(), 0))
189 return sympy
.And(*constraints
)
192 def _polymorphic(func
):
193 @functools.wraps(func
)
194 def wrapper(left
, right
):
195 if isinstance(left
, numbers
.Rational
):
196 left
= Rational(left
)
197 elif not isinstance(left
, Expression
):
198 raise TypeError('left must be a a rational number '
199 'or a linear expression')
200 if isinstance(right
, numbers
.Rational
):
201 right
= Rational(right
)
202 elif not isinstance(right
, Expression
):
203 raise TypeError('right must be a a rational number '
204 'or a linear expression')
205 return func(left
, right
)
210 return Polyhedron([], [right
- left
- 1])
214 return Polyhedron([], [right
- left
])
218 return Polyhedron([left
- right
], [])
222 return ~
Eq(left
, right
)
226 return Polyhedron([], [left
- right
- 1])
230 return Polyhedron([], [left
- right
])
235 Universe
= Polyhedron([])