9187081afe787c2cdaf75f1bf00e93cbe3a2862f
5 from . import islhelper
7 from .islhelper
import mainctx
, libisl
, isl_set_basic_sets
8 from .linexprs
import Expression
17 @functools.total_ordering
26 def __new__(cls
, *polyhedra
):
27 from .polyhedra
import Polyhedron
28 if len(polyhedra
) == 1:
29 polyhedron
= polyhedra
[0]
30 if isinstance(polyhedron
, str):
31 return cls
.fromstring(polyhedron
)
32 elif isinstance(polyhedron
, Polyhedron
):
35 raise TypeError('argument must be a string '
36 'or a Polyhedron instance')
38 for polyhedron
in polyhedra
:
39 if not isinstance(polyhedron
, Polyhedron
):
40 raise TypeError('arguments must be Polyhedron instances')
41 symbols
= cls
._xsymbols
(polyhedra
)
42 islset
= cls
._toislset
(polyhedra
, symbols
)
43 return cls
._fromislset
(islset
, symbols
)
46 def _xsymbols(cls
, iterator
):
48 Return the ordered tuple of symbols present in iterator.
52 symbols
.update(item
.symbols
)
53 return tuple(sorted(symbols
, key
=lambda symbol
: symbol
.name
))
57 return self
._polyhedra
65 return self
._dimension
68 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
69 islset
= libisl
.isl_set_make_disjoint(mainctx
, islset
)
70 return self
._fromislset
(islset
, self
.symbols
)
73 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
74 empty
= bool(libisl
.isl_set_is_empty(islset
))
75 libisl
.isl_set_free(islset
)
79 return not self
.isempty()
82 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
83 universe
= bool(libisl
.isl_set_plain_is_universe(islset
))
84 libisl
.isl_set_free(islset
)
88 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
89 bounded
= bool(libisl
.isl_set_is_bounded(islset
))
90 libisl
.isl_set_free(islset
)
93 def __eq__(self
, other
):
94 symbols
= self
._xsymbols
([self
, other
])
95 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
96 islset2
= other
._toislset
(other
.polyhedra
, symbols
)
97 equal
= bool(libisl
.isl_set_is_equal(islset1
, islset2
))
98 libisl
.isl_set_free(islset1
)
99 libisl
.isl_set_free(islset2
)
102 def isdisjoint(self
, other
):
103 symbols
= self
._xsymbols
([self
, other
])
104 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
105 islset2
= self
._toislset
(other
.polyhedra
, symbols
)
106 equal
= bool(libisl
.isl_set_is_disjoint(islset1
, islset2
))
107 libisl
.isl_set_free(islset1
)
108 libisl
.isl_set_free(islset2
)
111 def issubset(self
, other
):
112 symbols
= self
._xsymbols
([self
, other
])
113 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
114 islset2
= self
._toislset
(other
.polyhedra
, symbols
)
115 equal
= bool(libisl
.isl_set_is_subset(islset1
, islset2
))
116 libisl
.isl_set_free(islset1
)
117 libisl
.isl_set_free(islset2
)
120 def __le__(self
, other
):
121 return self
.issubset(other
)
123 def __lt__(self
, other
):
124 symbols
= self
._xsymbols
([self
, other
])
125 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
126 islset2
= self
._toislset
(other
.polyhedra
, symbols
)
127 equal
= bool(libisl
.isl_set_is_strict_subset(islset1
, islset2
))
128 libisl
.isl_set_free(islset1
)
129 libisl
.isl_set_free(islset2
)
132 def complement(self
):
133 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
134 islset
= libisl
.isl_set_complement(islset
)
135 return self
._fromislset
(islset
, self
.symbols
)
137 def __invert__(self
):
138 return self
.complement()
141 #does not change anything in any of the examples
142 #isl seems to do this naturally
143 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
144 islset
= libisl
.isl_set_remove_redundancies(islset
)
145 return self
._fromislset
(islset
, self
.symbols
)
147 def polyhedral_hull(self
):
148 # several types of hull are available
149 # polyhedral seems to be the more appropriate, to be checked
150 from .polyhedra
import Polyhedron
151 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
152 islbset
= libisl
.isl_set_polyhedral_hull(islset
)
153 return Polyhedron
._fromislbasicset
(islbset
, self
.symbols
)
155 def project_out(self
, symbols
):
156 # use to remove certain variables
157 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
159 for index
, symbol
in reversed(list(enumerate(self
.symbols
))):
160 if symbol
in symbols
:
163 islset
= libisl
.isl_set_project_out(islset
, libisl
.isl_dim_set
, index
+ 1, n
)
166 islset
= libisl
.isl_set_project_out(islset
, libisl
.isl_dim_set
, 0, n
)
167 symbols
= [symbol
for symbol
in self
.symbols
if symbol
not in symbols
]
168 return Domain
._fromislset
(islset
, symbols
)
171 from .polyhedra
import Polyhedron
172 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
173 islbset
= libisl
.isl_set_sample(islset
)
174 return Polyhedron
._fromislbasicset
(islbset
, self
.symbols
)
176 def intersection(self
, *others
):
179 symbols
= self
._xsymbols
((self
,) + others
)
180 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
182 islset2
= other
._toislset
(other
.polyhedra
, symbols
)
183 islset1
= libisl
.isl_set_intersect(islset1
, islset2
)
184 return self
._fromislset
(islset1
, symbols
)
186 def __and__(self
, other
):
187 return self
.intersection(other
)
189 def union(self
, *others
):
192 symbols
= self
._xsymbols
((self
,) + others
)
193 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
195 islset2
= other
._toislset
(other
.polyhedra
, symbols
)
196 islset1
= libisl
.isl_set_union(islset1
, islset2
)
197 return self
._fromislset
(islset1
, symbols
)
199 def __or__(self
, other
):
200 return self
.union(other
)
202 def __add__(self
, other
):
203 return self
.union(other
)
205 def difference(self
, other
):
206 symbols
= self
._xsymbols
([self
, other
])
207 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
208 islset2
= other
._toislset
(other
.polyhedra
, symbols
)
209 islset
= libisl
.isl_set_subtract(islset1
, islset2
)
210 return self
._fromislset
(islset
, symbols
)
212 def __sub__(self
, other
):
213 return self
.difference(other
)
216 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
217 islset
= libisl
.isl_set_lexmin(islset
)
218 return self
._fromislset
(islset
, self
.symbols
)
221 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
222 islset
= libisl
.isl_set_lexmax(islset
)
223 return self
._fromislset
(islset
, self
.symbols
)
226 def _fromislset(cls
, islset
, symbols
):
227 from .polyhedra
import Polyhedron
228 islset
= libisl
.isl_set_remove_divs(islset
)
229 islbsets
= isl_set_basic_sets(islset
)
230 libisl
.isl_set_free(islset
)
232 for islbset
in islbsets
:
233 polyhedron
= Polyhedron
._fromislbasicset
(islbset
, symbols
)
234 polyhedra
.append(polyhedron
)
235 if len(polyhedra
) == 0:
236 from .polyhedra
import Empty
238 elif len(polyhedra
) == 1:
241 self
= object().__new
__(Domain
)
242 self
._polyhedra
= tuple(polyhedra
)
243 self
._symbols
= cls
._xsymbols
(polyhedra
)
244 self
._dimension
= len(self
._symbols
)
247 def _toislset(cls
, polyhedra
, symbols
):
248 polyhedron
= polyhedra
[0]
249 islbset
= polyhedron
._toislbasicset
(polyhedron
.equalities
,
250 polyhedron
.inequalities
, symbols
)
251 islset1
= libisl
.isl_set_from_basic_set(islbset
)
252 for polyhedron
in polyhedra
[1:]:
253 islbset
= polyhedron
._toislbasicset
(polyhedron
.equalities
,
254 polyhedron
.inequalities
, symbols
)
255 islset2
= libisl
.isl_set_from_basic_set(islbset
)
256 islset1
= libisl
.isl_set_union(islset1
, islset2
)
260 def _fromast(cls
, node
):
261 from .polyhedra
import Polyhedron
262 if isinstance(node
, ast
.Module
) and len(node
.body
) == 1:
263 return cls
._fromast
(node
.body
[0])
264 elif isinstance(node
, ast
.Expr
):
265 return cls
._fromast
(node
.value
)
266 elif isinstance(node
, ast
.UnaryOp
):
267 domain
= cls
._fromast
(node
.operand
)
268 if isinstance(node
.operand
, ast
.invert
):
270 elif isinstance(node
, ast
.BinOp
):
271 domain1
= cls
._fromast
(node
.left
)
272 domain2
= cls
._fromast
(node
.right
)
273 if isinstance(node
.op
, ast
.BitAnd
):
274 return And(domain1
, domain2
)
275 elif isinstance(node
.op
, ast
.BitOr
):
276 return Or(domain1
, domain2
)
277 elif isinstance(node
, ast
.Compare
):
280 left
= Expression
._fromast
(node
.left
)
281 for i
in range(len(node
.ops
)):
283 right
= Expression
._fromast
(node
.comparators
[i
])
284 if isinstance(op
, ast
.Lt
):
285 inequalities
.append(right
- left
- 1)
286 elif isinstance(op
, ast
.LtE
):
287 inequalities
.append(right
- left
)
288 elif isinstance(op
, ast
.Eq
):
289 equalities
.append(left
- right
)
290 elif isinstance(op
, ast
.GtE
):
291 inequalities
.append(left
- right
)
292 elif isinstance(op
, ast
.Gt
):
293 inequalities
.append(left
- right
- 1)
298 return Polyhedron(equalities
, inequalities
)
299 raise SyntaxError('invalid syntax')
301 _RE_BRACES
= re
.compile(r
'^\{\s*|\s*\}$')
302 _RE_EQ
= re
.compile(r
'([^<=>])=([^<=>])')
303 _RE_AND
= re
.compile(r
'\band\b|,|&&|/\\|∧|∩')
304 _RE_OR
= re
.compile(r
'\bor\b|;|\|\||\\/|∨|∪')
305 _RE_NOT
= re
.compile(r
'\bnot\b|!|¬')
306 _RE_NUM_VAR
= Expression
._RE
_NUM
_VAR
307 _RE_OPERATORS
= re
.compile(r
'(&|\||~)')
310 def fromstring(cls
, string
):
311 # remove curly brackets
312 string
= cls
._RE
_BRACES
.sub(r
'', string
)
313 # replace '=' by '=='
314 string
= cls
._RE
_EQ
.sub(r
'\1==\2', string
)
315 # replace 'and', 'or', 'not'
316 string
= cls
._RE
_AND
.sub(r
' & ', string
)
317 string
= cls
._RE
_OR
.sub(r
' | ', string
)
318 string
= cls
._RE
_NOT
.sub(r
' ~', string
)
319 # add implicit multiplication operators, e.g. '5x' -> '5*x'
320 string
= cls
._RE
_NUM
_VAR
.sub(r
'\1*\2', string
)
321 # add parentheses to force precedence
322 tokens
= cls
._RE
_OPERATORS
.split(string
)
323 for i
, token
in enumerate(tokens
):
325 token
= '({})'.format(token
)
327 string
= ''.join(tokens
)
328 tree
= ast
.parse(string
, 'eval')
329 return cls
._fromast
(tree
)
332 assert len(self
.polyhedra
) >= 2
333 strings
= [repr(polyhedron
) for polyhedron
in self
.polyhedra
]
334 return 'Or({})'.format(', '.join(strings
))
337 def fromsympy(cls
, expr
):
338 raise NotImplementedError
341 raise NotImplementedError
344 if len(domains
) == 0:
345 from .polyhedra
import Universe
348 return domains
[0].intersection(*domains
[1:])
351 if len(domains
) == 0:
352 from .polyhedra
import Empty
355 return domains
[0].union(*domains
[1:])