57c08ba44bd8bcbad2cbc2dc86c2d84d30b5a166
1 # Copyright 2014 MINES ParisTech
3 # This file is part of LinPy.
5 # LinPy is free software: you can redistribute it and/or modify
6 # it under the terms of the GNU General Public License as published by
7 # the Free Software Foundation, either version 3 of the License, or
8 # (at your option) any later version.
10 # LinPy is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 # GNU General Public License for more details.
15 # You should have received a copy of the GNU General Public License
16 # along with LinPy. If not, see <http://www.gnu.org/licenses/>.
23 from fractions
import Fraction
25 from . import islhelper
26 from .islhelper
import mainctx
, libisl
27 from .linexprs
import LinExpr
, Symbol
, Rational
28 from .geometry
import GeometricObject
, Point
, Vector
37 @functools.total_ordering
38 class Domain(GeometricObject
):
40 A domain is a union of polyhedra. Unlike polyhedra, domains allow exact
41 computation of union and complementary operations.
43 A domain with a unique polyhedron is automatically subclassed as a
53 def __new__(cls
, *polyhedra
):
55 Return a domain from a sequence of polyhedra.
57 >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
58 >>> square2 = Polyhedron('2 <= x <= 4, 2 <= y <= 4')
59 >>> dom = Domain([square, square2])
61 It is also possible to build domains from polyhedra using arithmetic
62 operators Domain.__and__(), Domain.__or__() or functions And() and Or(),
63 using one of the following instructions:
65 >>> square = Polyhedron('0 <= x <= 2, 0 <= y <= 2')
66 >>> square2 = Polyhedron('2 <= x <= 4, 2 <= y <= 4')
67 >>> dom = square | square2
68 >>> dom = Or(square, square2)
70 Alternatively, a domain can be built from a string:
72 >>> dom = Domain('0 <= x <= 2, 0 <= y <= 2; 2 <= x <= 4, 2 <= y <= 4')
74 Finally, a domain can be built from a GeometricObject instance, calling
75 the GeometricObject.asdomain() method.
77 from .polyhedra
import Polyhedron
78 if len(polyhedra
) == 1:
79 argument
= polyhedra
[0]
80 if isinstance(argument
, str):
81 return cls
.fromstring(argument
)
82 elif isinstance(argument
, GeometricObject
):
83 return argument
.aspolyhedron()
85 raise TypeError('argument must be a string '
86 'or a GeometricObject instance')
88 for polyhedron
in polyhedra
:
89 if not isinstance(polyhedron
, Polyhedron
):
90 raise TypeError('arguments must be Polyhedron instances')
91 symbols
= cls
._xsymbols
(polyhedra
)
92 islset
= cls
._toislset
(polyhedra
, symbols
)
93 return cls
._fromislset
(islset
, symbols
)
96 def _xsymbols(cls
, iterator
):
98 Return the ordered tuple of symbols present in iterator.
101 for item
in iterator
:
102 symbols
.update(item
.symbols
)
103 return tuple(sorted(symbols
, key
=Symbol
.sortkey
))
108 The tuple of polyhedra present in the domain.
110 return self
._polyhedra
115 The tuple of symbols present in the domain equations, sorted according
123 The dimension of the domain, i.e. the number of symbols present in it.
125 return self
._dimension
129 Return True if the domain is empty, that is, equal to Empty.
131 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
132 empty
= bool(libisl
.isl_set_is_empty(islset
))
133 libisl
.isl_set_free(islset
)
138 Return True if the domain is non-empty.
140 return not self
.isempty()
142 def isuniverse(self
):
144 Return True if the domain is universal, that is, equal to Universe.
146 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
147 universe
= bool(libisl
.isl_set_plain_is_universe(islset
))
148 libisl
.isl_set_free(islset
)
153 Return True if the domain is bounded.
155 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
156 bounded
= bool(libisl
.isl_set_is_bounded(islset
))
157 libisl
.isl_set_free(islset
)
160 def __eq__(self
, other
):
162 Return True if two domains are equal.
164 if isinstance(other
, Domain
):
165 symbols
= self
._xsymbols
([self
, other
])
166 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
167 islset2
= other
._toislset
(other
.polyhedra
, symbols
)
168 equal
= bool(libisl
.isl_set_is_equal(islset1
, islset2
))
169 libisl
.isl_set_free(islset1
)
170 libisl
.isl_set_free(islset2
)
172 return NotImplemented
174 def isdisjoint(self
, other
):
176 Return True if two domains have a null intersection.
178 if not isinstance(other
, Domain
):
179 raise TypeError('other must be a Domain instance')
180 symbols
= self
._xsymbols
([self
, other
])
181 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
182 islset2
= self
._toislset
(other
.polyhedra
, symbols
)
183 equal
= bool(libisl
.isl_set_is_disjoint(islset1
, islset2
))
184 libisl
.isl_set_free(islset1
)
185 libisl
.isl_set_free(islset2
)
188 def issubset(self
, other
):
190 Report whether another domain contains the domain.
194 def __le__(self
, other
):
195 if isinstance(other
, Domain
):
196 symbols
= self
._xsymbols
([self
, other
])
197 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
198 islset2
= self
._toislset
(other
.polyhedra
, symbols
)
199 equal
= bool(libisl
.isl_set_is_subset(islset1
, islset2
))
200 libisl
.isl_set_free(islset1
)
201 libisl
.isl_set_free(islset2
)
203 return NotImplemented
204 __le__
.__doc
__ = issubset
.__doc
__
206 def __lt__(self
, other
):
208 Report whether another domain is contained within the domain.
210 if isinstance(other
, Domain
):
211 symbols
= self
._xsymbols
([self
, other
])
212 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
213 islset2
= self
._toislset
(other
.polyhedra
, symbols
)
214 equal
= bool(libisl
.isl_set_is_strict_subset(islset1
, islset2
))
215 libisl
.isl_set_free(islset1
)
216 libisl
.isl_set_free(islset2
)
218 return NotImplemented
220 def complement(self
):
222 Return the complementary domain of the domain.
224 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
225 islset
= libisl
.isl_set_complement(islset
)
226 return self
._fromislset
(islset
, self
.symbols
)
228 def __invert__(self
):
229 return self
.complement()
230 __invert__
.__doc
__ = complement
.__doc
__
232 def make_disjoint(self
):
234 Return an equivalent domain, whose polyhedra are disjoint.
236 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
237 islset
= libisl
.isl_set_make_disjoint(mainctx
, islset
)
238 return self
._fromislset
(islset
, self
.symbols
)
242 Simplify the representation of the domain by trying to combine pairs of
243 polyhedra into a single polyhedron, and return the resulting domain.
245 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
246 islset
= libisl
.isl_set_coalesce(islset
)
247 return self
._fromislset
(islset
, self
.symbols
)
249 def detect_equalities(self
):
251 Simplify the representation of the domain by detecting implicit
252 equalities, and return the resulting domain.
254 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
255 islset
= libisl
.isl_set_detect_equalities(islset
)
256 return self
._fromislset
(islset
, self
.symbols
)
258 def remove_redundancies(self
):
260 Remove redundant constraints in the domain, and return the resulting
263 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
264 islset
= libisl
.isl_set_remove_redundancies(islset
)
265 return self
._fromislset
(islset
, self
.symbols
)
267 def aspolyhedron(self
):
268 from .polyhedra
import Polyhedron
269 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
270 islbset
= libisl
.isl_set_polyhedral_hull(islset
)
271 return Polyhedron
._fromislbasicset
(islbset
, self
.symbols
)
276 def project(self
, symbols
):
278 Project out the sequence of symbols given in arguments, and return the
281 symbols
= list(symbols
)
282 for symbol
in symbols
:
283 if not isinstance(symbol
, Symbol
):
284 raise TypeError('symbols must be Symbol instances')
285 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
287 for index
, symbol
in reversed(list(enumerate(self
.symbols
))):
288 if symbol
in symbols
:
291 islset
= libisl
.isl_set_project_out(islset
,
292 libisl
.isl_dim_set
, index
+ 1, n
)
295 islset
= libisl
.isl_set_project_out(islset
, libisl
.isl_dim_set
, 0, n
)
296 symbols
= [symbol
for symbol
in self
.symbols
if symbol
not in symbols
]
297 return Domain
._fromislset
(islset
, symbols
)
301 Return a sample of the domain, as an integer instance of Point. If the
302 domain is empty, a ValueError exception is raised.
304 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
305 islpoint
= libisl
.isl_set_sample_point(islset
)
306 if bool(libisl
.isl_point_is_void(islpoint
)):
307 libisl
.isl_point_free(islpoint
)
308 raise ValueError('domain must be non-empty')
310 for index
, symbol
in enumerate(self
.symbols
):
311 coordinate
= libisl
.isl_point_get_coordinate_val(islpoint
,
312 libisl
.isl_dim_set
, index
)
313 coordinate
= islhelper
.isl_val_to_int(coordinate
)
314 point
[symbol
] = coordinate
315 libisl
.isl_point_free(islpoint
)
318 def intersection(self
, *others
):
320 Return the intersection of two or more domains as a new domain. As an
321 alternative, function And() can be used.
328 def __and__(self
, other
):
329 if isinstance(other
, Domain
):
330 symbols
= self
._xsymbols
([self
, other
])
331 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
332 islset2
= other
._toislset
(other
.polyhedra
, symbols
)
333 islset
= libisl
.isl_set_intersect(islset1
, islset2
)
334 return self
._fromislset
(islset
, symbols
)
335 return NotImplemented
336 __and__
.__doc
__ = intersection
.__doc
__
338 def union(self
, *others
):
340 Return the union of two or more domains as a new domain. As an
341 alternative, function Or() can be used.
348 def __or__(self
, other
):
349 if isinstance(other
, Domain
):
350 symbols
= self
._xsymbols
([self
, other
])
351 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
352 islset2
= other
._toislset
(other
.polyhedra
, symbols
)
353 islset
= libisl
.isl_set_union(islset1
, islset2
)
354 return self
._fromislset
(islset
, symbols
)
355 return NotImplemented
356 __or__
.__doc
__ = union
.__doc
__
358 def __add__(self
, other
):
360 __add__
.__doc
__ = union
.__doc
__
362 def difference(self
, other
):
364 Return the difference of two domains as a new domain.
366 symbols
= self
._xsymbols
([self
, other
])
367 islset1
= self
._toislset
(self
.polyhedra
, symbols
)
368 islset2
= other
._toislset
(other
.polyhedra
, symbols
)
369 islset
= libisl
.isl_set_subtract(islset1
, islset2
)
370 return self
._fromislset
(islset
, symbols
)
372 def __sub__(self
, other
):
373 return self
.difference(other
)
374 __sub__
.__doc
__ = difference
.__doc
__
378 Return the lexicographic minimum of the elements in the domain.
380 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
381 islset
= libisl
.isl_set_lexmin(islset
)
382 return self
._fromislset
(islset
, self
.symbols
)
386 Return the lexicographic maximum of the elements in the domain.
388 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
389 islset
= libisl
.isl_set_lexmax(islset
)
390 return self
._fromislset
(islset
, self
.symbols
)
392 _RE_COORDINATE
= re
.compile(r
'\((?P<num>\-?\d+)\)(/(?P<den>\d+))?')
396 Return the vertices of the domain, as a list of rational instances of
399 from .polyhedra
import Polyhedron
400 if not self
.isbounded():
401 raise ValueError('domain must be bounded')
402 islbset
= self
._toislbasicset
(self
.equalities
, self
.inequalities
,
404 vertices
= libisl
.isl_basic_set_compute_vertices(islbset
);
405 vertices
= islhelper
.isl_vertices_vertices(vertices
)
407 for vertex
in vertices
:
408 expr
= libisl
.isl_vertex_get_expr(vertex
)
410 if islhelper
.isl_version
< '0.13':
411 constraints
= islhelper
.isl_basic_set_constraints(expr
)
412 for constraint
in constraints
:
413 constant
= libisl
.isl_constraint_get_constant_val(constraint
)
414 constant
= islhelper
.isl_val_to_int(constant
)
415 for index
, symbol
in enumerate(self
.symbols
):
416 coefficient
= libisl
.isl_constraint_get_coefficient_val(constraint
,
417 libisl
.isl_dim_set
, index
)
418 coefficient
= islhelper
.isl_val_to_int(coefficient
)
420 coordinate
= -Fraction(constant
, coefficient
)
421 coordinates
.append((symbol
, coordinate
))
423 string
= islhelper
.isl_multi_aff_to_str(expr
)
424 matches
= self
._RE
_COORDINATE
.finditer(string
)
425 for symbol
, match
in zip(self
.symbols
, matches
):
426 numerator
= int(match
.group('num'))
427 denominator
= match
.group('den')
428 denominator
= 1 if denominator
is None else int(denominator
)
429 coordinate
= Fraction(numerator
, denominator
)
430 coordinates
.append((symbol
, coordinate
))
431 points
.append(Point(coordinates
))
436 Return the integer points of a bounded domain, as a list of integer
437 instances of Point. If the domain is not bounded, a ValueError exception
440 if not self
.isbounded():
441 raise ValueError('domain must be bounded')
442 from .polyhedra
import Universe
, Eq
443 islset
= self
._toislset
(self
.polyhedra
, self
.symbols
)
444 islpoints
= islhelper
.isl_set_points(islset
)
446 for islpoint
in islpoints
:
448 for index
, symbol
in enumerate(self
.symbols
):
449 coordinate
= libisl
.isl_point_get_coordinate_val(islpoint
,
450 libisl
.isl_dim_set
, index
)
451 coordinate
= islhelper
.isl_val_to_int(coordinate
)
452 coordinates
[symbol
] = coordinate
453 points
.append(Point(coordinates
))
456 def __contains__(self
, point
):
458 Return True if the point if contained within the domain.
460 for polyhedron
in self
.polyhedra
:
461 if point
in polyhedron
:
466 def _polygon_inner_point(cls
, points
):
467 symbols
= points
[0].symbols
468 coordinates
= {symbol
: 0 for symbol
in symbols
}
470 for symbol
, coordinate
in point
.coordinates():
471 coordinates
[symbol
] += coordinate
472 for symbol
in symbols
:
473 coordinates
[symbol
] /= len(points
)
474 return Point(coordinates
)
477 def _sort_polygon_2d(cls
, points
):
480 o
= cls
._polygon
_inner
_point
(points
)
484 dx
, dy
= (coordinate
for symbol
, coordinate
in om
.coordinates())
485 angle
= math
.atan2(dy
, dx
)
487 return sorted(points
, key
=angles
.get
)
490 def _sort_polygon_3d(cls
, points
):
493 o
= cls
._polygon
_inner
_point
(points
)
504 raise ValueError('degenerate polygon')
508 normprod
= norm_oa
* om
.norm()
509 cosinus
= max(oa
.dot(om
) / normprod
, -1.)
510 sinus
= u
.dot(oa
.cross(om
)) / normprod
511 angle
= math
.acos(cosinus
)
512 angle
= math
.copysign(angle
, sinus
)
514 return sorted(points
, key
=angles
.get
)
518 Return the list of faces of a bounded domain. Each face is represented
519 by a list of vertices, in the form of rational instances of Point. If
520 the domain is not bounded, a ValueError exception is raised.
523 for polyhedron
in self
.polyhedra
:
524 vertices
= polyhedron
.vertices()
525 for constraint
in polyhedron
.constraints
:
527 for vertex
in vertices
:
528 if constraint
.subs(vertex
.coordinates()) == 0:
534 def _plot_2d(self
, plot
=None, **kwargs
):
535 import matplotlib
.pyplot
as plt
536 from matplotlib
.patches
import Polygon
539 plot
= fig
.add_subplot(1, 1, 1)
540 xmin
, xmax
= plot
.get_xlim()
541 ymin
, ymax
= plot
.get_ylim()
542 for polyhedron
in self
.polyhedra
:
543 vertices
= polyhedron
._sort
_polygon
_2d
(polyhedron
.vertices())
544 xys
= [tuple(vertex
.values()) for vertex
in vertices
]
546 xmin
, xmax
= min(xmin
, float(min(xs
))), max(xmax
, float(max(xs
)))
547 ymin
, ymax
= min(ymin
, float(min(ys
))), max(ymax
, float(max(ys
)))
548 plot
.add_patch(Polygon(xys
, closed
=True, **kwargs
))
549 plot
.set_xlim(xmin
, xmax
)
550 plot
.set_ylim(ymin
, ymax
)
553 def _plot_3d(self
, plot
=None, **kwargs
):
554 import matplotlib
.pyplot
as plt
555 from mpl_toolkits
.mplot3d
import Axes3D
556 from mpl_toolkits
.mplot3d
.art3d
import Poly3DCollection
562 xmin
, xmax
= axes
.get_xlim()
563 ymin
, ymax
= axes
.get_ylim()
564 zmin
, zmax
= axes
.get_zlim()
566 for vertices
in self
.faces():
567 vertices
= self
._sort
_polygon
_3d
(vertices
)
568 vertices
.append(vertices
[0])
569 face_xyzs
= [tuple(vertex
.values()) for vertex
in vertices
]
570 xs
, ys
, zs
= zip(*face_xyzs
)
571 xmin
, xmax
= min(xmin
, float(min(xs
))), max(xmax
, float(max(xs
)))
572 ymin
, ymax
= min(ymin
, float(min(ys
))), max(ymax
, float(max(ys
)))
573 zmin
, zmax
= min(zmin
, float(min(zs
))), max(zmax
, float(max(zs
)))
574 poly_xyzs
.append(face_xyzs
)
575 collection
= Poly3DCollection(poly_xyzs
, **kwargs
)
576 axes
.add_collection3d(collection
)
577 axes
.set_xlim(xmin
, xmax
)
578 axes
.set_ylim(ymin
, ymax
)
579 axes
.set_zlim(zmin
, zmax
)
582 def plot(self
, plot
=None, **kwargs
):
584 Plot a 2D or 3D domain using matplotlib. Draw it to the current plot
585 object if present, otherwise create a new one. options are keyword
586 arguments passed to the matplotlib drawing functions, they can be used
587 to set the drawing color for example. Raise ValueError is the domain is
590 if not self
.isbounded():
591 raise ValueError('domain must be bounded')
592 elif self
.dimension
== 2:
593 return self
._plot
_2d
(plot
=plot
, **kwargs
)
594 elif self
.dimension
== 3:
595 return self
._plot
_3d
(plot
=plot
, **kwargs
)
597 raise ValueError('polyhedron must be 2 or 3-dimensional')
599 def subs(self
, symbol
, expression
=None):
601 Substitute the given symbol by an expression in the domain constraints.
602 To perform multiple substitutions at once, pass a sequence or a
603 dictionary of (old, new) pairs to subs. The syntax of this function is
604 similar to LinExpr.subs().
606 polyhedra
= [polyhedron
.subs(symbol
, expression
)
607 for polyhedron
in self
.polyhedra
]
608 return Domain(*polyhedra
)
611 def _fromislset(cls
, islset
, symbols
):
612 from .polyhedra
import Polyhedron
613 islset
= libisl
.isl_set_remove_divs(islset
)
614 islbsets
= islhelper
.isl_set_basic_sets(islset
)
615 libisl
.isl_set_free(islset
)
617 for islbset
in islbsets
:
618 polyhedron
= Polyhedron
._fromislbasicset
(islbset
, symbols
)
619 polyhedra
.append(polyhedron
)
620 if len(polyhedra
) == 0:
621 from .polyhedra
import Empty
623 elif len(polyhedra
) == 1:
626 self
= object().__new
__(Domain
)
627 self
._polyhedra
= tuple(polyhedra
)
628 self
._symbols
= cls
._xsymbols
(polyhedra
)
629 self
._dimension
= len(self
._symbols
)
633 def _toislset(cls
, polyhedra
, symbols
):
634 polyhedron
= polyhedra
[0]
635 islbset
= polyhedron
._toislbasicset
(polyhedron
.equalities
,
636 polyhedron
.inequalities
, symbols
)
637 islset1
= libisl
.isl_set_from_basic_set(islbset
)
638 for polyhedron
in polyhedra
[1:]:
639 islbset
= polyhedron
._toislbasicset
(polyhedron
.equalities
,
640 polyhedron
.inequalities
, symbols
)
641 islset2
= libisl
.isl_set_from_basic_set(islbset
)
642 islset1
= libisl
.isl_set_union(islset1
, islset2
)
646 def _fromast(cls
, node
):
647 from .polyhedra
import Polyhedron
648 if isinstance(node
, ast
.Module
) and len(node
.body
) == 1:
649 return cls
._fromast
(node
.body
[0])
650 elif isinstance(node
, ast
.Expr
):
651 return cls
._fromast
(node
.value
)
652 elif isinstance(node
, ast
.UnaryOp
):
653 domain
= cls
._fromast
(node
.operand
)
654 if isinstance(node
.operand
, ast
.invert
):
656 elif isinstance(node
, ast
.BinOp
):
657 domain1
= cls
._fromast
(node
.left
)
658 domain2
= cls
._fromast
(node
.right
)
659 if isinstance(node
.op
, ast
.BitAnd
):
660 return And(domain1
, domain2
)
661 elif isinstance(node
.op
, ast
.BitOr
):
662 return Or(domain1
, domain2
)
663 elif isinstance(node
, ast
.Compare
):
666 left
= LinExpr
._fromast
(node
.left
)
667 for i
in range(len(node
.ops
)):
669 right
= LinExpr
._fromast
(node
.comparators
[i
])
670 if isinstance(op
, ast
.Lt
):
671 inequalities
.append(right
- left
- 1)
672 elif isinstance(op
, ast
.LtE
):
673 inequalities
.append(right
- left
)
674 elif isinstance(op
, ast
.Eq
):
675 equalities
.append(left
- right
)
676 elif isinstance(op
, ast
.GtE
):
677 inequalities
.append(left
- right
)
678 elif isinstance(op
, ast
.Gt
):
679 inequalities
.append(left
- right
- 1)
684 return Polyhedron(equalities
, inequalities
)
685 raise SyntaxError('invalid syntax')
687 _RE_BRACES
= re
.compile(r
'^\{\s*|\s*\}$')
688 _RE_EQ
= re
.compile(r
'([^<=>])=([^<=>])')
689 _RE_AND
= re
.compile(r
'\band\b|,|&&|/\\|∧|∩')
690 _RE_OR
= re
.compile(r
'\bor\b|;|\|\||\\/|∨|∪')
691 _RE_NOT
= re
.compile(r
'\bnot\b|!|¬')
692 _RE_NUM_VAR
= LinExpr
._RE
_NUM
_VAR
693 _RE_OPERATORS
= re
.compile(r
'(&|\||~)')
696 def fromstring(cls
, string
):
698 Create a domain from a string. Raise SyntaxError if the string is not
701 # remove curly brackets
702 string
= cls
._RE
_BRACES
.sub(r
'', string
)
703 # replace '=' by '=='
704 string
= cls
._RE
_EQ
.sub(r
'\1==\2', string
)
705 # replace 'and', 'or', 'not'
706 string
= cls
._RE
_AND
.sub(r
' & ', string
)
707 string
= cls
._RE
_OR
.sub(r
' | ', string
)
708 string
= cls
._RE
_NOT
.sub(r
' ~', string
)
709 # add implicit multiplication operators, e.g. '5x' -> '5*x'
710 string
= cls
._RE
_NUM
_VAR
.sub(r
'\1*\2', string
)
711 # add parentheses to force precedence
712 tokens
= cls
._RE
_OPERATORS
.split(string
)
713 for i
, token
in enumerate(tokens
):
715 token
= '({})'.format(token
)
717 string
= ''.join(tokens
)
718 tree
= ast
.parse(string
, 'eval')
719 return cls
._fromast
(tree
)
722 assert len(self
.polyhedra
) >= 2
723 strings
= [repr(polyhedron
) for polyhedron
in self
.polyhedra
]
724 return 'Or({})'.format(', '.join(strings
))
726 def _repr_latex_(self
):
728 for polyhedron
in self
.polyhedra
:
729 strings
.append('({})'.format(polyhedron
._repr
_latex
_().strip('$')))
730 return '${}$'.format(' \\vee '.join(strings
))
733 def fromsympy(cls
, expr
):
735 Create a domain from a sympy expression.
738 from .polyhedra
import Lt
, Le
, Eq
, Ne
, Ge
, Gt
740 sympy
.And
: And
, sympy
.Or
: Or
, sympy
.Not
: Not
,
741 sympy
.Lt
: Lt
, sympy
.Le
: Le
,
742 sympy
.Eq
: Eq
, sympy
.Ne
: Ne
,
743 sympy
.Ge
: Ge
, sympy
.Gt
: Gt
,
745 if expr
.func
in funcmap
:
746 args
= [Domain
.fromsympy(arg
) for arg
in expr
.args
]
747 return funcmap
[expr
.func
](*args
)
748 elif isinstance(expr
, sympy
.Expr
):
749 return LinExpr
.fromsympy(expr
)
750 raise ValueError('non-domain expression: {!r}'.format(expr
))
754 Convert the domain to a sympy expression.
757 polyhedra
= [polyhedron
.tosympy() for polyhedron
in polyhedra
]
758 return sympy
.Or(*polyhedra
)
763 Create the intersection domain of the domains given in arguments.
765 if len(domains
) == 0:
766 from .polyhedra
import Universe
769 return domains
[0].intersection(*domains
[1:])
770 And
.__doc
__ = Domain
.intersection
.__doc
__
774 Create the union domain of the domains given in arguments.
776 if len(domains
) == 0:
777 from .polyhedra
import Empty
780 return domains
[0].union(*domains
[1:])
781 Or
.__doc
__ = Domain
.union
.__doc
__
785 Create the complementary domain of the domain given in argument.
788 Not
.__doc
__ = Domain
.complement
.__doc
__